Problem 3.3-1. Fundamental relation from the equations of state
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a) To find the chemical potential, let us use the Gibbs-Duhem relation. Since the
independent variables are s and v, it is convenient to use the Gibbs-Duhem
relation in the energy representation:
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Problem 3.3-1. Fundamental relation from the equations of state

Molar form of the Euler equation of state in the energy representation is:
u=Ts—Pv+ U

Substituting the equations of state into this equation:

3As? As® As® As®
u= § ———v———+const =——+const
1% 1% 1% %
As’
u=——++const
V




Problem 3.3-1. Fundamental relation from the equations of state

Now let us directly integrate the molar form of the equations of state:
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Problem 3.5-1. Fundamental relation from the equations of state
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c) Equations of state: P = T =
) Eq v a+buy a+buy

Equations of state are functions of u and v, so convenient to work in the
entropy representation in molar form:
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Are these equations of state compatible?
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Problem 3.5-1. Fundamental relation from the equations of state

dszldu+£dv — ds=(2+bvjdu+(£+bu)dv
T T u %

ds =< du+ bv(du)+ Cav+ bu(dv) = ad In(u)+bv(du)+ cd In(v)+ bu(av)
U V

vdu = d(uv) - This is wrong because v is a variable, not a constant

(same problem in 3.3-1)

ds=adn(u)+bdu)+cdn(v)+buldv) = adln(u)+cdIn(v)+b(u(dv)+v(du))
= adln(u)+cd ln(v) +bd(uv)

s=aln(u)+cIn(v)+buv + const




Problem 3.5-6. VAW and ideal gas in equilibrium

In this problem, temperature, pressure and molar volumes of the van der
Waals fluid and the ideal gas are the same in equilibrium

vaw: p_ RT _a deal: p=2L RT
v=b v° 1% P

Substituting this molar volume into the equation of state for VdW:

p_ RT aP’
= - 2 Here P is the only unknown, so need to solve for P
R_PT_ p (RT)

After simple algebra: P= RT(; — RT} =3.5-10’ [Pa]
a



Problem 3.6-1. Microwave Background Radiation

Fundamental relation S = fb”“U Say 174
Equation of state U=bVT*

- . . 4 3
Substituting U into expression for S: S = gbVT
Isentropic process: S, i, =S =S 2V. =V

3 3 3
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Note that energy of the background radiation is not conserved, it constantly
decreases! Where does it go?



Problem 3.7-2. Rubber Band

Equation of state of the rubber band is: U=cLT
Since T is constant, U is also constant: dT =0 dU =0
From the conservation of energy: dU =W +00 =0
50 = —OW
. . L _ L()
Calculating work from the second equation of state: I'=bT
L1 a Lo
L—L
oW =bT 0 dL
Ll a Lo
We obtain: I—1
o0 =-bT > dL

L1 _Lo



Problem 3.8-1. Paramagnet

The fundamental relation of a simple paramagnetic system is:
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Problem 3.8-1. Paramagnet

The Euler equation: U=TS+BV +uN

Substituting the equations of state into the Euler equation:
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This coincides with the postulated fundamental relation



Problem 3.9-6. Model of a solid insulator

Fundamental relation:

u=As""exp| blv—v 2+i
o bo—vo) 2

a) Show that at s—0, T—0
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Clearly T—0 as s—0 independent on the value of v



Problem 3.9-6. Model of a solid insulator

b) Show that ¢, ~ T3 at T—>0 u=As"? exp(b(v —v, ) + ij
3R
L . ) < 4 3 S4/3
et us calculate T/u: T = Aexp b(v—vo) NI AV NS
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Since s—0 at T—0, we can simplify the expression for T at low temperature: 1 ~ —

)
On the other hand, from the fundamental relation at low T, we obtain: U ~ s

Substituting into the expression for T: T~s"7 = s~T°

u
Since T~— = u~Ts~T" Cv:(
S

Buj oT* 7

or), ar

This is valid for real insulators — heat capacity vanishes as T2 at low temperatures



Problem 3.9-6. Model of a solid insulator

c) Show thatc, ~ R at T—e

s is @ monotonically increasing function of u and T s0 s—o0, T—eo (this is not trivial,
related to the fact that second derivative of u with respect to s is positive)
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Numerical Problem — Helium and Water

Using the known form of the fundamental relation for the VdW fluid, we can plot
entropy of the composite system as:

R = 83144;V0 = 003;U0 = 15000;
ah=000346;bh=23710"%,ch= 15;(x helim %)
aw =0544;bw = 305105 cw = 31;(x waters)

Pbi3D|R Log|(Vh~—bh) (Uh +ah/ Vh)®| + RLog{(V0 — Vh —lw) (U0— Uh+ aw /(VO — Vh))™], {Vh, 0 01 V0, 0 99 V0}, {Uh,0 01UO, 0 99U0} , PbiRange —> ALl

- SurficeGraphis-



Numerical Problem — Helium and Water

Same plot in the contour format:

ContourP bR Log|(Vh—bh) (Uh + ah/ Vh)®| + R Log[(V0 — Vh —bw) (U0 — Uh+ aw /(V0 — Vh)™], {Vh, 0 01 V0, 0 99 V0}, {Uh,001UO, 0 99UO}, P btRange —> Al}
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Numerical Problem — Helium and Water

Now we can numerically solve for the volume and energy of helium
that maximize the entropy of the composite (water + helium) system

m ve = FindM inin um [-R Log|(Vh — bh) (Uh + ah/ Vl)®| —R Log[(VO— Vh—bw) (U0 - Uh+ aw / (VO — Vh)™], {Vh, 0 01 VO, 0 99 V0} , {Uh, 0 001 U0, 0 999UO} |
{—273 848, {Vh - 00150799, Uh - 4903 03}}

Vhl =Vh/.mwe[[2,1]]

00150799

Uhl =Uh/.mve[[2,2]]

490303

Substituting thus obtained values of the volume and energy into the VdW
equations of state, we find the values of temperature and pressure of helium in
equilibrium

_ Uhl+ah/Vhl
B chR

T

393154

R ahchR
Vhl-bh UhlVhlVhl+ahVhl

217109.

P=T



Numerical Problem — Helium and Water

Now, to find the equilibrium state of the system we use two temperature
equations of state and the pressure equation of state for the two VAW fluids:

TO = 300
300

eql =Uh+ ah/ Vh==chRTO

000346
i deiih

Uh == 374148

eg2=Uw +aw/(VO-Vh)==cw RTO

0544
Uw + —————— == 773239
003-Vh
e = R ahchR _ R aw cw R
Vh—-bh UhVh?+ahVh VO—Vh-bw Uw (VO-Vh)?2+aw (VO- Vh)
83144 00431517 140214 83144

- - +
—-00000237+Vh 000346 Vh + UhVh? 0544(003-Vh) +Uw (003 -Vh)2  00299695-Vh

NSobe|(eql,eq2,eq3), (Vh,Uh, Uw}]

{{Uh—> 3668 54 — 599 249 T, Uw - 771426 + 0003439215, Vh - 6 9252x 107 — 568961 x 10°° 1,
{Uh—> 3668 54 + 599249, Uw - 771426 — 000343921 Vh - 6 9252x 107’ + 568961 x 107° ]},{Uh—> 3741 25,Uw —» 769587,Vh - 00151061},
{Uh— 3741 36,Uw —» 475318,Vh— 00298174},{Uh - 3741 36,Uw - —7106 08, Vh - 0.0299633}}

Physically meaningful solutions have real-valued volumes and energies.
There are three such solutions.



Numerical Problem — Helium and Water

Three physically meaningful solutions:

1 {Uh- 374125095377012062",Uw — 7695 86692894271351", Vh - 0 01510612069316226157},
2 {Uh- 3741 36396037953744",Uw — 4753 17737520313787", Vh —» 0 029817401540839814 1},
3 {Uh- 3741 36452555181753",Uw —» —7106 08071201483948", Vh - 0 0299633385449733715}

They correspond to three volume ratios of helium to water:
1.01425 163.295 817.298

Some of you have stated that the first solution (Vh/Vw = 1.01425) is the one that should
be experimentally observed as it maximizes the total entropy of helium plus water. This is
incorrect since the system is not adiabatically isolated from the environment in part (b) of
this problem. Therefore, the total entropy of helium, water AND the environment must be
maximized by the correct solution. At this point, you do not have enough information to
decide which of the three solutions is correct — we will learn this later in the course. It will
turn out that the right solution is Vh/Vw =817.298. This solution minimizes energy of the
system. This solution is consistent with our intuition that water vapor should condense
into liquid at room temperature and pressure close to atmospheric, and thus occupy small
volume. Note that the internal energy of water for solution #3 is negative, which means
that the absolute value of the (negative) potential energy exceeds the kinetic energy and
thus the system is bound (remember mechanics and astronomy), or “condensed” in the
language of thermodynamics.



