
Problem 3.3-1. Fundamental relation from the equations of state 
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a) To find the chemical potential, let us use the Gibbs-Duhem relation. Since the 

independent variables are s and v, it is convenient to use the Gibbs-Duhem 

relation in the energy representation:
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Problem 3.3-1. Fundamental relation from the equations of state 

Molar form of the Euler equation of state in the energy representation is:

µ+−= PvTsu

Substituting the equations of state into this equation:
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Problem 3.3-1. Fundamental relation from the equations of state 

Now let us directly integrate the molar form of the equations of state:
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Problem 3.5-1. Fundamental relation from the equations of state 

c) Equations of state:
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Equations of state are functions of u and v, so convenient to work in the 

entropy representation in molar form:
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Are these equations of state compatible? 
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Problem 3.5-1. Fundamental relation from the equations of state 
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Problem 3.5-6. VdW and ideal gas in equilibrium
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In this problem, temperature, pressure and molar volumes of the van der 

Waals fluid and the ideal gas are the same in equilibrium

VdW: Ideal:

P
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Substituting this molar volume into the equation of state for VdW:
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Problem 3.6-1. Microwave Background Radiation

4/14/34/1
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4
VUbS =Fundamental relation

4
bVTU =Equation of state

Substituting U into expression for  S:
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Note that energy of the background radiation is not conserved, it constantly 

decreases! Where does it go? 



Problem 3.7-2. Rubber Band

TcLU 0=Equation of state of the rubber band is:

Since T is constant, U is also constant: 0=dU0=dT

From the conservation of energy: 0=+= QWdU δδ

WQ δδ −= WQ δδ −=

Calculating work from the second equation of state:
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Problem 3.8-1. Paramagnet

The fundamental relation of a simple paramagnetic system is:
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Problem 3.8-1. Paramagnet

NVBTSU e µ++=The Euler equation:

Substituting the equations of state into the Euler equation:
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This coincides with the postulated fundamental relation



Problem 3.9-6. Model of a solid insulator
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Fundamental relation:

a) Show that at s→0, T→0
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Clearly T→0 as s→0 independent on the value of v



Problem 3.9-6. Model of a solid insulator

b) Show that cv ~ T3 at T→0
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Let us calculate T/u:
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Since s→0 at T→0, we can simplify the expression for T at low temperature: 
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On the other hand, from the fundamental relation at low T, we obtain:
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This is valid for real insulators – heat capacity vanishes as T3 at low temperatures



Problem 3.9-6. Model of a solid insulator

c) Show that cv ~ R at T→∞
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s is a monotonically increasing function of u and T so s→∞, T→∞ (this is not trivial, 

related to the fact that second derivative of u with respect to s is positive)
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d) Show that α →0 as P→0
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Numerical Problem – Helium and Water

R = 8.3144;V0=0.03;U0=15000;

ah=0.00346;bh=23.710-6;ch= 1.5;H*helium *L

aw =0.544;bw =30.510-6;cw = 3.1;H*water*L

Plot3DARLogAHVh-bhL HUh+ahêVhLchE+RLog@HV0-Vh-bw L HU0-Uh+aw êHV0-VhLLcw D,8Vh,0.01 V0,0.99 V0<,8Uh,0.01 U0,0.99 U0<,PlotRange->AllE

Using the known form of the fundamental relation for the VdW fluid, we can plot 

entropy of the composite system as:
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Numerical Problem – Helium and Water

ContourPlotARLogAHVh-bhL HUh+ahêVhLchE+RLog@HV0-Vh-bw L HU0-Uh+aw êHV0-VhLLcw D,8Vh,0.01 V0,0.99 V0<,8Uh,0.01 U0,0.99 U0<,PlotRange->AllE
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Same plot in the contour format:
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Numerical Problem – Helium and Water

Now we can numerically solve for the volume and energy of helium 

that maximize the entropy of the composite (water + helium) system

mve=FindMinimum A-RLogAHVh-bhL HUh+ahê VhLchE-RLog@HV0- Vh-bw L HU0-Uh+aw ê HV0-VhLLcw D,8Vh,0.01 V0,0.99 V0<,8Uh,0.001 U0,0.999 U0<E

8-273.848,8VhØ0.0150799,UhØ4903.03<<

Vh1= Vh ê.mve@@2,1DD

0.0150799

Uh1=Uh ê.mve@@2,2DDUh1=Uh ê.mve@@2,2DD

4903.03

Substituting thus obtained values of the volume and energy into the VdW 

equations of state, we find the values of temperature and pressure of helium in 

equilibrium

T=
Uh1+ahêVh1

chR

393.154

P=T 
R

Vh1-bh
-

ahchR

Uh1Vh1Vh1+ahVh1

217109.



Numerical Problem – Helium and Water

T0=300

300

eq1=Uh+ahêVh==chRT0

Uh+
0.00346

Vh
== 3741.48

eq2=Uw +aw ê HV0-VhL ==cw RT0

Uw+
0.544

== 7732.39

Now, to find the equilibrium state of the system we use two temperature 

equations of state and the pressure equation of state for the two VdW fluids:

Uw+
0.544

0.03- Vh
== 7732.39

eq3=
R

Vh-bh
-

ahchR

UhVh2+ahVh
==

R

V0- Vh-bw
-

aw cw R

Uw HV0- VhL2+aw  HV0- VhL

8.3144

-0.0000237+ Vh
-

0.0431517

0.00346Vh+ UhVh2
== -

14.0214

0.544H0.03-VhL +Uw H0.03- VhL2
+

8.3144

0.0299695-Vh

NSolve@8eq1,eq2,eq3<,8Vh,Uh,Uw<D

99UhØ3668.54- 599.249I,Uw Ø7714.26+ 0.00343921I,VhØ6.9252µ10-7- 5.68961µ10-6I=,

9UhØ3668.54+599.249I,Uw Ø7714.26- 0.00343921I,VhØ6.9252µ10-7+5.68961µ10-6I=,8UhØ3741.25,Uw Ø 7695.87,VhØ0.0151061<,

8UhØ3741.36,Uw Ø 4753.18,VhØ0.0298174<,8UhØ3741.36,Uw Ø -7106.08,VhØ0.0299633<=

Physically meaningful solutions have real-valued volumes and energies.

There are three such solutions.



Numerical Problem – Helium and Water

Three physically meaningful solutions:

8UhÆ3741.25095377012062̀ ,Uw Æ7695.86692894271351̀ ,VhÆ0.0151061206931622615̀ <,
8UhÆ3741.36396037953744̀ ,Uw Æ4753.17737520313787̀ ,VhÆ0.029817401540839814̀ <,
8UhÆ3741.36452555181753̀ ,Uw Æ-7106.08071201483948̀ ,VhÆ0.0299633385449733715̀ <

1

2

3

They correspond to three volume ratios of helium to water:

1.01425                           163.295                                   817.298

Some of you have stated that the first solution (Vh/Vw = 1.01425) is the one that should 
be experimentally observed as it maximizes the total entropy of helium plus water. This is 
incorrect since the system is not adiabatically isolated from the environment in part (b) of 
this problem. Therefore, the total entropy of helium, water AND the environment must be 
maximized by the correct solution. At this point, you do not have enough information to 
decide which of the three solutions is correct – we will learn this later in the course. It will 
turn out that the right solution is Vh/Vw =817.298. This solution minimizes energy of the 
system. This solution is consistent with our intuition that water vapor should condense 
into liquid at room temperature and pressure close to atmospheric, and thus occupy small 
volume. Note that the internal energy of water for solution #3 is negative, which means 
that the absolute value of the (negative) potential energy exceeds the kinetic energy and 
thus the system is bound (remember mechanics and astronomy), or “condensed” in the 
language of thermodynamics.


