Problem 1.8-3. Work and heat

(A—B) W=-P,(V,-V,)=-4-10*|7]

AU =25(PV,-PV,)=10*[7] QO=AU-W =14-10*[J]
B
(B—C) W=-— j PV)YAV =7-10°[J]
AU =25(PV. - PV,)=-2510[J] 0=AU-W =-95-10°]J]

(C=A) W=0 Q=AU=25PV,-PV.)==15-10|J]

A—B, parabola r :
(A=, P ) W=—[P(V)dV =-2.67-10°[J]
B

0=AU-W =12.67-10°[J]



Consistent: a, ¢, e, g, i
Problem 1.10-1. Shapes of Svs U |,consistent: b, d. 1, h. |

Most difficult: b, ¢, f and i 4
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Inconsistent with the postulates because entropy does not scale linearly with the
size of the system
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Problem 1.10-1. Shapes of S vs U

uv S
f) S =NRIn| —
N ROy,
Inconsistent with postulate 1V, R
S should be zero at 0S/0U— / U
. 0 S* S
) U= VLS—eXp — Consistent with the postulates
RV NR
U S A
| Then rotate it
First plot around the U/S
Uvs S bisector to
obtain Svs U
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Problem 1.10-3. Entropy maximum for a composite system

For a composite system (S=S,+S,)

o (NV), =27-107°
(NV), =8-10°
U=U,+U, =80
Un/(Un+Up)
S 1/3 1/3 . .
=3U, —|—2(U —UA) - need to maximize with respect to U,
const
_ J 1/3 1/3 2 2 -2/3
0=—VPBU"+2(U-U,) =  0=U;""-Z(U-U,)
oU 3
. U
Solving for Uy, U,= =51.8[J]

1+(2/3)"



Problem 2.3-4. Restrictions due to the Postulates

S=AU"V"N'
Most common problem: forgetting to check if entropy is additive (extensive)
When we increase the size of a thermodynamic system by a factor of A, all

extensive variables should scale with A: U— AU, V—= AV, N— AN, S— AS.

Subjecting the fundamental relation to this scaling transformation:

AS =AU ) (AV)'(AN) = A" AU"V"N" =

= =" n+m+r=1




Problem 2.3-4. Restrictions due to the Postulates

S
S=AU"V"N’
S must be increasing with U, so n>0 R
U
a—S — oo as S—0, therefore n<1 —> |0<n<T
oU
Additional condition: P should increase with U/V:
1 o
P: aS :mAUan_lNr _:_S:nAUn—IVmNI”
T oV T oU
> P:TaS:mU —> ﬂ>() —> m >0
vV nV n



Problem 2.6-3. Energy in Equilibrium

UV +U® =25%x10°[J] NP =2 NP=3 U =9
(2)

The equations of state L _ ER N 1 — ER N
of the two systems are: TO 2 WO T 2 y®

Since the two systems are in thermal equilibrium:

15

(D (2)
3NY SN g =By

() _ (2) - —
TU=TY = 5y =3y

UY U =25x101] = g0+ By 2253100 =

UY =714[J]




Problem 2.7-3. The Indeterminate Problem of Thermodynamics

a) Showthat P =p?
Since the piston is adiabatic, Q2 = 0 and thus dU "* = —p"?qy ">
Since the composite system is isolated dU =dU Y +dU® =0
—> _P(l)dv(l) _P(Z)dv(Z) -0
Since the total volume of the composite system is constant vV =—qv®
Therefore, P = P follows.

b) Show that thermodynamics does not tell us what the temperatures of the two systems are

The entropy maximum condition requires:

dau® po dUu® p®
_ g (2) _ (1) (2) _
dS=dS"’ +dS" = 0t rw av'’ + ot oo av'’=0 =
dUV + pPav®  qu® + pPqav® ~ 0
7O t T o

The numerators in this expression vanish identically because of the adiabaticity of the wall,
therefore the denominators (T(") and T(®) can be arbitrary and still satisfy the entropy
maximum condition.



Problem 2.8-1. Semi-permeable partition

Two different gases N, and N,
N, (1, N, N, @, N,
N, can freely flow through the
N, membrane while N, cannot.
Important: pWY £ p® although one of the gas components can freely

penetrate the membrane

P is intensive parameter conjugate to volume, volume is constrained

Equilibrium conditions: Conservation conditions:

) (2)
’ul(l) — :u1(2) N1(1) + Nl(z) = (Nl(l) + Nl(z) )initial
T T

— UYL Ly® = (U(l) +U(2))

initial




Problem 2.8-1. Semi-permeable partition

3/2
S =NA+ NRIn v 5/2/ —N,RIn Ny —N,RIn Ny N=N,+N,
N N N
l _ oA _ 3NR |:> INRT Solve < TO T =T
T JU 2U U= 7 form Vo Ly = (U(” +U(2))
q initial
T =27273[K]
M _ 0S
T — IN — .-« Here, when differentiating do not forget that N=N,+N,,
1

5
After some algebra: % =A— 5 R+R ln[

U3/2V
NI(NI +N2)3/2J



Problem 2.8-1. Semi-permeable partition

Solve
o 1t g
T T
To find P:
S P NR
ov T %

PY =680[kPa]

Similarly: P =567[kPa]

[ NO+N® = (N1<1> N N1(2>)

initial

= NP’=N?=0.75




Numerical Problem

First calculate P and T by differentiating the fundamental relation. Then use the parametric
plot of P(S) and T(S) to plot the P(T) dependence.

Nu=1;v=001;00=1;
S S S
T[S_] =U0; (2+ N_u)Exp[N_u ;

P[S —UOS—2 S,

[51= v2 Nu]’
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