
Problem 1.8-3. Work and heat
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Problem 1.10-1. Shapes of S vs U

Most difficult: b, c, f and i
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Inconsistent with the postulates because entropy does not scale linearly with the 

size of the system

Consistent: a, c, e, g, i

Inconsistent: b, d, f, h, j
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Consistent with the postulates, zero of energy

is arbitrary.



Problem 1.10-1. Shapes of S vs U
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Inconsistent with postulate IV,

S should be zero at ∂S/∂U→∞
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U vs S

Then rotate it 
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obtain S vs U

Consistent with the postulates



Problem 1.10-3. Entropy maximum for a composite system
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For a composite system (S=S1+S2)
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Problem 2.3-4. Restrictions due to the Postulates 

rmn
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Most common problem: forgetting to check if entropy is additive (extensive) 

When we increase the size of a thermodynamic system by a factor of λ, all 

extensive variables should scale with λ: U→ λU, V→ λV, N→ λN, S→ λS.

Subjecting the fundamental relation to this scaling transformation: 
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Problem 2.3-4. Restrictions due to the Postulates 
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Problem 2.6-3. Energy in Equilibrium 
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Since the two systems are in thermal equilibrium:

2)1( =N 3)2( =N

)1(

)1(

)1( 2

31

U

N
R

T
= )2(

)2(

)2( 2

51

U

N
R

T
=The equations of state 

of the two systems are:

Since the two systems are in thermal equilibrium:

)2()1(
TT = )2(

)2(

)1(

)1(

2

5

2

3

U

N

U

N
= )1()2(

6

15
UU =

][105.2 3)2()1(
JUU ×=+ ][105.2

6

15 3)1()1(
JUU ×=+ ][714)1(

JU =



Problem 2.7-3. The Indeterminate Problem of Thermodynamics 
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b) Show that thermodynamics does not tell us what the temperatures of the two systems are
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The numerators in this expression vanish identically because of the adiabaticity of the wall, 
therefore the denominators (T(1) and T(2)) can be arbitrary and still satisfy the entropy 
maximum condition.



Problem 2.8-1. Semi-permeable partition 

Two different gases N1 and N2

N1
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(1) N1
(2), N2

(2)

N1 can freely flow through the 

membrane while N2 cannot.

Important:
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N1

Important: PP ≠ although one of the gas components can freely 

penetrate the membrane

P is intensive parameter conjugate to volume, volume is constrained
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Problem 2.8-1. Semi-permeable partition 
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Here, when differentiating do not forget that N=N1+N2
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Problem 2.8-1. Semi-permeable partition 
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Numerical Problem 

First calculate P and T by differentiating the fundamental relation. Then use the parametric 

plot of P(S) and T(S) to plot the P(T) dependence.

Nu=1;V=0.01;U0=1;
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ParametricPlot@8T@SD,P@SD<,8S,0,0.8<,Frame->True,TextStyle-> 8FontFamily->"Times",FontW eight->"Bold",FontSize->14<,
FrameLabel-> 8Temperature ""@KD,Pressure" "@PaD<,PlotRange->AllD
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