
Problem 6.3-2 Joule-Thomson process

Since the initial and final enthalpies are the same:
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Problem 6.3 − 3 Joule-Thomson process for a vdW fluid
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B) Estimating the small parameters of the expansion suggested by Callen for CO2:
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Small parameter expansion does not work, full numerical solution is required!



Problem 6.4−1 Chemical Reaction

a) The chemical reaction equation:
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Gives us the stoichiometric coefficients:
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Problem 6.4−1 Chemical Reaction

b) Using the general expression for mole numbers in a chemical reaction:
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We can write mole numbers for each of the substances in the reaction:
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Problem 6.4−1 Chemical Reaction

c) For negative the first material that depletes is water at
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Problem 6.4−1 Chemical Reaction
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e) Since the nominal solution of the equilibrium condition give the value 8.0
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Problem 7.4 − 7  Maxwell Relations
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Employing a Maxwell relation:
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For a vdW fluid:
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Problem 7.4 − 18  Compressibility

There are multiple ways of solving this problem.

vdPsdTd +−=µ

We can write the Gibbs-Duhem relation:

Since T and µ are constants, dP is constant in any process, including the 
process of compression of the system. Therefore:
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The reason for diverging compressibility is permeability of the wall. There is 
no resistance to a piston changing the volume of the system.
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is calculated at constant mole number, not constant chemical potential. 



Problem 7.4-24 Temperature in a Joule-Thomson process
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Problem 7.4-24 Temperature in a Joule-Thomson process

Since temperature does not change during the process OC, we can simply write: 
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Problem 7.4-24 Temperature in a Joule-Thomson process

Let us now express work and heat transfer during processes OC and CF in 
terms of the given parameters of these processes.
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Since OC process is at constant temperature, we can write:
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Problem 7.4-24 Temperature in a Joule-Thomson process

Using equation (4): ( )∫∫ −+−=−=−
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Using equation (3):
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Problem 7.4-24 Temperature in a Joule-Thomson process
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Since pressure does not change during the process CF, we can write: 
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From the conservation of energy:
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Problem 7.4-24 Temperature in a Joule-Thomson process
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Using equation (1):
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Problem 7.4-24 Temperature in a Joule-Thomson process
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Solving equation (10) for Tf (note that the terms with vf cancel):
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After some algebra the above expression simplifies to:
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The condition for temperature being lowered in this process is:
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Isenthalpic curves of He

The fact that isenthalpic curves intersect at small 
values of molar enthalpy (and low T) tells us that 
for some values of P and T there exist two states 
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Expressing P and T in terms of h and v:

and using a parametric plot with v as a parameter:

for some values of P and T there exist two states 
with different values of molar enthalpy h. You can 
check that these states differ by molar volumes. 
The existence of two states with different molar 
volumes at the same T and P values signals a first 
order phase transition (condensation).
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Helium needs to be pre-cooled in order for Joule-Thomson process to cool the gas because 
the inversion temperature of He is quite low ~ 35 K. Note that pre-cooling to the liquid nitrogen 
temperature (77 K) is not enough to make the Joule-Thomson process efficient. This is why 
liquid helium is difficult to liquefy and this is mainly why it costs ~ 5$ per liter, one order of 
magnitude more expensive than liquid nitrogen.


