Problem 8.2-1 Stability of Fundamental Relations

a) The sign of the second derivative of a function determines if it is convex or concave
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Since X>0, this derivative is negative only for 0<n<1, this is the concavity condition
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Satisfy the stability criteria for F,
so the system is stable



Problem 8.2-1 Stability of Fundamental Relations

C) G =BT"*P*N
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Problem 8.2-1 Stability of Fundamental Relations
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The fluting condition is violated, so the system is not stable.



Problem 8.3-3 Instability of vdW Fluid
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The above condition is not always satisfied at low enough temperature and
volume.



Problem 9.3-3 Boiling point versus height

Let us use the Clapeyron equation to calculate the change of temperature

P ¢ !
dl  TAv Tvg
Where v, is the molar volume of gas.
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Approximating vapor by ideal gas: v, = ?
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Problem 9.3-3 Boiling point versus height

The change of pressureis AP = pgAh

Where p is the density of air, g is the acceleration of free fall, and 4 is the
height difference. Substituting in the Clapeyron equation:

Ah:m—TP 4.2[J 1 call*10°[cal  mole]*10[K |

gpRT® " 10m/s>|#1.3|kg /m’ |+8.3[7 1 K ]* 373K 1)

10°|Pa]=281[m]



Problem 9.3-5 Triple Point

At the triple point, the coexistence curves intersect:

24382003 _ 5799374
1. 1.
T =195.2[K]

P =exp 24.38—&63 =5932.6[ Pa]
195.2

Using the Clapeyron equation and approximating the gas phase by ideal gas:
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Problem 9.3-5 Triple Point

Latent heat of vaporization:

2 2
0 = RI; aP = K1, exp| 24.38— 3063 30?3 =3063R =25453[J / mole]
P dT P T. )T,
Latent heat of sublimation:
2 2
0 = R, dp = KT, exp| 27.92 — 3754 3734 =3754R =31196]J / mole]
P dT P T. )T,

Latent heat of fusion: gf =/ —¢ =691R=5742[J | mole]

The latter is due to the fact that a process described by a small circle around
the triple point should return the system to the initial state with zero net work
done in the cycle (P = Py, and AV,,,,=0) and zero total latent heat
absorbed/emitted in the cycle.



Problem 9.3-6 Liquid-solid system

We can write the molar volume, v, of the solid/liquid system as: v = xv, + (l—x)vL
(1

where x is the mole fraction of solid, and v¢ and v, are the molar volumes of solid
and liquid respectively.

Taking total derivative to the above expression with respect to T and noting that
the molar volume of the system is restricted, we obtain:

dv dx dvg dv, dx dv,
=—V,+x + ——v, —x——=0 (2)
dI' dT dI  dT dT dT
Solving equation (2) for dx/dT:
2 P (12 )
dx _ " dT dT (3)




Problem 9.3-6 Liquid-solid system

Now we need to calculate the total derivatives of molar volume in equation (3).
Molar volumes of liquid in solid in equilibrium are functions of pressure and
temperature, therefore:

dv, (P.T) _ (aVL,S j + (BVL,S j dpP
P

ar  \ or OP ) dT

(4)

Recalling the definitions of the coefficient of thermal expansion and
isothermal compressibility, we can rewrite (4) as:

dv, s(P,T) dP (5)

AT =Xs\Ves ~Krs)Vis d—T

Now we can use the Clapeyron equation to express dP/dT in terms of second
derivatives of thermodynamic potentials:

dP 4
dT  T(v, —vy)

(6)



Problem 9.3-6 Liquid-solid system

Substituting in eq. (5):

dv, (P,T) /
L’Z,T = s)Ves ~Krs)Vis (v, —v.)

Now use eq. (7) in eq. (3):

dx xd]f+ dT x 14 1—x 14
AV, — K + a,v, —K
ar- ) b m( R, vs)j (v, vs)[ “VLT<L—VSJ
Simplifying:

dx  xavg +(1—x)aLvL B U XKy Vg +(1—x)KTLvL
dT (VL — Vs ) r (VL — Vs )2




Problem 9.4-4 vdW isotherm

vdW equation in reduced variables: p=r 3 _ =
3W—-1 v°
~ _  9++/81-96T
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Therefore, vdW model fails even qualitatively for 1T < ——

4bR



Problem 9.7-1 Phase diagram of a solution

Upper boundary T =T,—(T, T )x’ - foas
Lower boundary T =T,—(T,-T )x,(2-x,)
D
Initiall Xy =—ta 1 ©
nitially: A0 N +N, 2
S .
b liquid
The temperature where boiling first occurs: ! R
0 X
1 1 3
Iy =1, _(To _Tl)E(Z_Ej =1, _Z(To _T1)
The molar fraction of A in the vapor is given by:
2 3 2 _ 3 = 0.866
TO_(TO_TI)XA:TB:TO_Z(TO_TI) —=> xA:Z = X =0




Problem 9.7-3 Binary liquid composition

Mole fraction of A in the binary liquid is x/,
Mole faction of A in the gas phase is x8,
_N§ _ N,
N TN
Where: N'- mole number of liquid A+B

g
XA

N ¢ - mole number of gas A+B
N', - mole number of liquid A
N, - mole number of liquid B

v

N'+ N¢ = N - total mole number

D
T,—-Dx\ =T,—Cx$ = Xy =Ex2
g [
Therefore:  Va _ X :2)(:114 :QN—? (1)
N? C CN



Problem 9.7-3 Binary liquid composition

From the initial condition of all material being liquid with mole fraction of A: xg

and taking into account that the total mole fraction of A does not change
during boiling:

N, +N}
=T @)
D N,
From (1):  Nj = (N N')
N'
Substituting in (2):
, DN, 1
0 N+CN(N N') _NN'(, D(N-N'))_ D(1
X, = l 1+ l =x,f|1+—| —-1
N N N C N C\f
Nl
Where we have introduced the liquid fraction of material: f=—



Problem 9.7-3 Binary liquid composition

a-nf[1v2(1-)) = xg—(f+§/zl_f)j

Since the fraction of material remaining in liquid is f=1/2 and D = 3C

There is also a one-line geometric solution to this problem. What is it?



