
Problem 8.2-1 Stability of Fundamental Relations

a) The sign of the second derivative of a function determines if it is convex or concave
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Since X>0, this derivative is negative only for 0<n<1, this is the concavity condition
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Satisfy the stability criteria for F,

so the system is stable



Problem 8.2-1 Stability of Fundamental Relations
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so the system is stable



Problem 8.2-1 Stability of Fundamental Relations
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The fluting condition is violated, so the system is not stable.



Problem 8.3-3 Instability of vdW Fluid
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Let us calculate the isothermal compressibility:
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The above condition is not always satisfied at low enough temperature and 

volume. 



Problem 9.3-3 Boiling point versus height
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Let us use the Clapeyron equation to calculate the change of temperature

Where vg is the molar volume of gas.
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Problem 9.3-3 Boiling point versus height

The change of pressure is hgP ∆=∆ ρ

Where ρ is the density of air, g is the acceleration of free fall, and ∆h is the 

height difference. Substituting in the Clapeyron equation:
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Problem 9.3-5 Triple Point

At the triple point, the coexistence curves intersect:
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Using the Clapeyron equation and approximating the gas phase by ideal gas:
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Problem 9.3-5 Triple Point
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Latent heat of vaporization:

Latent heat of sublimation:
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Latent heat of fusion: ]/[5742691 moleJRvsf ==−= lll

The latter is due to the fact that a process described by a small circle around 

the triple point should return the system to the initial state with zero net work 

done in the cycle (P ≈ Ptp and ∆Vcycle=0) and zero total latent heat 

absorbed/emitted in the cycle.



Problem 9.3-6 Liquid-solid system

We can write the molar volume, v, of the solid/liquid system as: ( ) LS vxxvv −+= 1

where x is the mole fraction of solid, and vS and vL are the molar volumes of solid 

and liquid respectively.

Taking total derivative to the above expression with respect to T and noting that 

the molar volume of the system is restricted, we obtain:
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Solving equation (2) for dx/dT:
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Problem 9.3-6 Liquid-solid system

Now we need to calculate the total derivatives of molar volume in equation (3). 

Molar volumes of liquid in solid in equilibrium are functions of pressure and 

temperature, therefore:
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Recalling the definitions of the coefficient of thermal expansion and Recalling the definitions of the coefficient of thermal expansion and 

isothermal compressibility, we can rewrite (4) as:
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Now we can use the Clapeyron equation to express dP/dT in terms of second 

derivatives of thermodynamic potentials:
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Problem 9.3-6 Liquid-solid system
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Now use eq. (7) in eq. (3): 
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Simplifying:



Problem 9.4-4 vdW isotherm
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Problem 9.7-1 Phase diagram of a solution

liquid

gas
T

S

C
D

( ) 2

100 AxTTTT −−=Upper boundary

Lower boundary ( ) ( )
AA xxTTTT −−−= 2100

Initially:
2

1
0 =

+
=

BA

A
A

NN

N
x

liquid

0 1xA

The temperature where boiling first occurs: 

( ) ( )100100
4

3

2

1
2

2

1
TTTTTTTB −−=








−−−=

The molar fraction of A in the vapor is given by:

( ) ( )100

2

100
4

3
TTTTxTTT BA −−==−−

4

32 =Ax 866.0=Ax



Problem 9.7-3 Binary liquid composition
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Problem 9.7-3 Binary liquid composition

From the initial condition of all material being liquid with mole fraction of A:
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Problem 9.7-3 Binary liquid composition
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There is also a one-line geometric solution to this problem. What is it?


