next up previous
Next: About this document ...


Physics 115A   Spring 2001

Statistical Physics due 12:30 pm Thursday, April 12
PROBLEM SET 1

Reading: Chapter 1 (especially sections 1.1-1.6 and last paragraph of page 39) and Chapter 2 in Reif.

Hint: Notice that there are many helpful mathematical appendices in Reif.

1.
Show explicitly that the following identities are correct for the Gaussian function

\begin{displaymath}P(x)dx=\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}dx
\end{displaymath}

(a)
Normalization

\begin{displaymath}\int^{\infty}_{-\infty} dx P(x)=1
\end{displaymath}

(b)
Mean or average value

\begin{displaymath}\mu=\int^{\infty}_{-\infty} dx P(x)x
\end{displaymath}

(c)
Variance or second moment of the distribution

\begin{displaymath}\sigma^2=\overline{(x-\mu)^2}
\end{displaymath}

2.
Reif 1.9
3.
Reif 1.10
4.
Reif 1.11
5.
Reif 2.1



 

Clare Yu
2001-04-04