
Lecture 8: Engines and Refrigerators

Heat Engines
Heat engines have important technological importance. The basic idea is that one

would like to extract heat from a heat reservoir, where that energy is spread randomly
over a huge number of degrees of freedom, and convert it into work. By work we mean
energy associated with a single degree of freedom connected with an external parameter
of some outside device. Typically the engine goes through a cycle, returning to its initial
state after having turned some heat into work. Think about the gasoline engine in your
car. Ideally we would like a perfect engine that converts all the heat into useable work:

w = q (1)

T

q

w

Perfect Engine w = q

engine

This obeys the first law of thermodynamics but it violates the second law. (Nothing’s
perfect.) From our previous discussions we know that work can be converted into heat in
an irreversible process in which the distribution of systems over accessible states becomes
more random so that entropy increases. One cannot expect to simply reverse the process
and convert internal energy randomly distributed over all its degrees of freedom into
work that changes one macroscopic degree of freedom. It’s possible but fantastically
improbable. It amounts to decreasing the number of accessible states, i.e., to decreasing
the entropy. The second law of thermodynamics requires that the total entropy of the
complete system (consisting of the heat engine, the outside device on which it does work,
and the heat reservoir) be such that in a cycle

∆S ≥ 0 (2)

Now the heat engine itself returns to its previous state after a cycle is complete so
its entropy is unchanged. The outside device on which work is done by changing an
external parameter has no entropy change because we envision that it has an external
parameter that changes without doing it at the expense of its other degrees of freedom.
For example consider lifting a weight. So that leaves the heat reservoir from which heat



has been extracted. So dQ < 0. But

dS =
dQ

T
(3)

This implies that dS < 0 and that violates the second law of thermodynamics. In fact
one way of stating the second law is to say

• It is impossible to construct a perfect heat engine.

(This statement is sometimes called Kelvin’s formulation of the second law of thermo-
dynamics.) We can make realizable heat engines that do not violate the second law by
bringing in a second heat bath to absorb some heat. Since it absorbs heat, its entropy is
increased. If it increases its entropy enough, it will ensure that the entire system has a net
increase in entropy. Let’s suppose that we have 2 reservoirs, a hotter one at temperature
T1 from which heat is extracted and a cooler one at temperature T2 which absorbs some
heat. In between a heat engine absorbs some heat q1 from the hotter reservoir, does some
work and dumps some heat q2 into the cooler reservoir.
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In this case the first law requires that in a cycle

q1 = w + q2 (4)

After one cycle the engine and the device on which work is done are back where they
started, so their entropy does not change. The net increase in entropy must come from
the heat reservoirs:

∆S =
(−q1)

T1

+
q2
T2

≥ 0 (5)
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From (4) q2 = q1 − w. Plugging this into (5), we get

−q1
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+
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T2

≥ 0 (6)
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The equals sign holds for quasi–static processes. We can rewrite this last equation as

η ≡
w

q1
≤ 1−

T2

T1

=
T1 − T2
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(8)

where η = w/q1 is called the “efficiency” of the engine. For a perfect engine η = w/q1 = 1.
For a real engine η < 1:

η ≡
w

q1
=

q1 − q2
q1

< 1 (9)

since some heat does not get transformed into work but is dumped into another heat
reservoir. The most efficient engine occurs for quasi–static processes where ∆S = 0.
From (8) this maximum efficiency is

η =
T1 − T2

T1

(10)

Furthermore any engine which operates between these two reservoirs in a quasi–static
manner has this same maximum efficiency.

Carnot Engine
Conceptually the simplest engine operating quasi–statically between 2 heat reservoirs

is called a “Carnot engine.” Let x denote the external parameter of the engine M; changes
in this parameter give rise to the work performed by the engine. Let the engine initially
be in a state where x = xa and its temperature T = T2, the temperature of the colder
heat reservoir. The Carnot engine then goes through a cycle consisting of 4 steps, all
performed quasi–statically. Let’s label the macrostates of the engine by small letters a,
b, c, and d.
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1. a → b: The engine is thermally insulated. Its external parameter is changed
slowly until the engine temperature reaches T1. Thus xa → xb such that T2 → T1.
∆S = 0 since the system is thermally isolated and the process is quasi–static. (One
can think of a piston compressing gas in a thermally insulated cylinder.)

2. b → c: The engine is now placed in thermal contact with the heat reservoir at
temperature T1. Its external parameter is changed further, the engine remaining at
temperature T1 and absorbing some heat q1 from the reservoir. Thus xb → xc such
that q1 is absorbed by the engine. (The gas in the cylinder is allowed to expand
while its temperature is maintained at T1. It absorbs heat q1.)

3. c → d: The engine is again thermally insulated. Its external parameter is changed
in such a direction that its temperature goes back to T2. Thus xc → xd such that
T1 → T2. ∆S = 0. (The gas in the thermally insulated cylinder is allowed to
expand until the gas temperature is T2.)

4. d → a: The engine is now placed in thermal contact with the heat reservoir at
temperature T2. Its external parameter is then changed until it returns to its
initial value xa, the engine remaining at temperature T2 and dumping some heat
q2 into this reservoir. Thus xd → xa and heat q2 is given off by the engine. (The
gas is compressed while its temperature is maintained at T2. It puts heat q2 into
the reservoir.)

The engine is now back in its initial state and the cycle is completed. The amount of
work done during a Carnot cycle is given by

w =
∫

a→b→c→d→a

pdV (11)

This corresponds to the shaded area in the pV plot. Usually the cooler reservoir is just
the air. Think of your car engine giving off heat to the radiator that in turn gives the
heat to the air.

We are used to gasoline powered engines in our car, steam engines, nuclear powered
generators, etc. One type of engine you may not be aware of is a solid state engine with
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no moving parts. If you take a bar of a metal or a semiconductor, heat one end and
cool the other, you can get electrons to flow from the hot end to the cold end and these
electrons do work.
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Solid state engines are used in deep space probes where moving parts would wear out
after a few years. The heat source can be a radioactive substance like plutonium.

Refrigerators
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A refrigerator is a device which removes heat from a cooler reservoir and puts it in
a hotter reservoir. A perfect refrigerator would do this heat transfer without affecting
the environment in any other way, i.e., no work would need to be done. But a perfect
refrigerator would violate the second law. The total entropy has to increase:

∆S =
q

T1

+
(−q)

T2

≥ 0 (12)

or

q
(

1

T1

−
1

T2

)

≥ 0 (13)

5



which is impossible since q > 0 and T1 > T2. Thus we can state the second law of
thermodynamics as:

• It is impossible to make a perfect refrigerator.

This is known as the Clausius formulation of the second law.
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We are all familiar with this. We have to plug in our refrigerators in the kitchen. In
fact about 95% of your electric bill is due to the electricity gobbled up by your refrigerator.
A real refrigerator requires that some work w be done to make it run. If it takes heat q2
from the cooler reservoir at temperature T2 and transfers heat q1 to the hotter reservoir
at temperature T1, then the first law requires that

q2 = q1 − w (14)

So the heat absorbed from the colder reservoir is less than the heat given off to the hotter
reservoir. The second law requires that

∆S =
q1
T1

+
(−q2)

T2

≥ 0 (15)

or
q2
q1

≤
T2

T1

(16)

where the equals sign holds only for a refrigerator operating between two reservoirs quasi–
statically. One way to make a such a refrigerator would be to run the Carnot engine in
reverse.
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