
LECTURE 4

Reversible and Irreversible Processes
Consider an isolated system in equilibrium (i.e., all microstates are equally probable),

with some number of microstates Ωi that are accessible to the system. Suppose some
internal constraint is removed but the total energy and particle number remain constant.
Now the system can be in any of the Ωi microstates plus whatever new microstates become
available when the constraint is removed. The total number of accessible microstates after
the constraint is removed is Ωf .

Note that the system is not in equilibrium immediately after removing the constraint.
Only a fraction of the states Ωi/Ωf are occupied. By the H theorem, the system now
evolves in time (approaches equilibrium) in such a manner as to make more equal the
probability of the system being found in any of the Ωf microstates. (If some constraint on
an isolated system is removed, the parameters readjust in such a way that Ω(y1, ..., yn) →
maximum.)

Note also that if Ωf > Ωi, then after final equilibrium is achieved, simply restoring
the initial constraint may not restore the system to its initial condition. In such a case
we talk about an irreversible process.

As an example, consider a box divided into two parts by a partition.

O N
2 2

Removing the partition increases the number of microstates accessible to the system
as the volume accessible to each molecule increases. After the new equilibrium is reached,
simply restoring the partition will not return the system to its original condition.

To summarize, if some constraint (or constraints) is removed in an isolated system in
equilibrium, then the number of microstates accessible to the system can either remain
constant or increase, i.e., Ωf ≥ Ωi. If Ωf = Ωi, then the process is reversible. If Ωf > Ωi,
the process is irreversible.

Dependence of Density of States on External Parameters
We have already shown that the equilibrium condition for two thermally interacting

systems is that the β parameters of both systems be equal. We now want to determine
the equilibrium conditions for two systems that interact thermally and mechanically. We
will need, and therefore must derive, the relationship

∂ ln Ω

∂xα

= βXα (1)



where xα is an external parameter and the generalized force is

Xα = −
∂E

∂xα

= −
∂E

∂xα

(2)

In other words, we want to know how the number of states Ω changes when work is
done on the system, i.e., when the external parameters are changed. When the external
parameters are changed, the energy levels shift. For example, consider standing waves
or resonant modes in a cavity. If we change the size of the cavity, the wavelength of the
standing waves changes, and the associated energy levels change. (Quantum mechani-
cally, the frequency and energy go as 1/λ where λ is the wavelength.) This is why a
piccolo has a higher pitch than a flute or a tuba.

Consider Ω as a function of E and x. (Let’s drop the subscript α for a moment and
concentrate on one external parameter.) Then how does Ω depend on x? When x is
changed by an amount dx, the energy Er(x) of each microstate is changed by an amount
(∂Er/∂x)dx. Let ΩY (E, x) be the number of states which have an energy between E and
E+ δE when the external parameter is x and which are such that the derivative ∂Er/∂x
is between Y and Y + δY . The total number of states is

Ω(E, x) =
∑

Y

ΩY (E, x) (3)

Consider a particular energy E. When the external parameter is changed, some states
which originally had an energy less than E will acquire an energy greater than E and
vice–versa. Those states for which ∂Er/∂x has the particular value Y change their energy
by Y dx. Hence all those states located within an energy Y dx below E will change their
energy from a value smaller than E to one greater than E.

Y dx
E

The number σY (E) of such states is thus given by the number per unit energy mul-
tiplied by the energy range Y dx, i.e., by

σY (E) =
ΩY (E, x)

δE
Y dx (4)

Different states have their energy changed by different amounts Y dx. Hence the total
number of states σ(E) whose energy is changed from a value less than to a value greater
than E is given by summing over all possible values of Y :

σ(E) =
∑

Y

σY (E) =
∑

Y

ΩY (E, x)

δE
Y dx =

Ω(E, x)

δE
Y dx (5)
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where the mean value of Y is

Y =
1

Ω(E, x)

∑

Y

ΩY (E, x)Y (6)

Note that

Y =
∂Er

∂x
= −X (7)

where X is the generalized force conjugate to the external parameter x.
Let us now consider the total number of states Ω(E, x) between E and E + δE.

When the parameter x changes from x to x + dx, the number of states changes by
[∂Ω(E, x)/∂x]dx which must be due to [the number of states which enter this range from
below by having their energy changed from a value less than E to one greater than E]
minus [the number of states that leave through the top by having their energy changed
from a value less than E + δE to one greater than E + δE]:

E

E +   Eδ

∂Ω(E, x)

∂x
dx = σ(E)− σ(E + δE) = −

∂σ

∂E
δE (8)

Using (5), this becomes
∂Ω

∂x
= −

∂

∂E
(ΩY ) (9)

or
∂Ω

∂x
= −

∂Ω

∂E
Y − Ω

∂Y

∂E
(10)

Dividing both sides by Ω, we have

∂ ln Ω

∂x
= −

∂ ln Ω

∂E
Y −

∂Y

∂E
(11)

The second term on the right is negligible since lnΩ ∼ f where the number of degrees of
freedom f is on the order of 1023. So we can write

∂ ln Ω

∂x
= −

∂ ln Ω

∂E
Y = βX (12)

since β = ∂ ln Ω/∂E. If we have several external parameters, we can easily generalize
this to the desired relation:

∂ ln Ω

∂xα

= βXα (13)
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From (12) and the definition of the entropy S = kB ln Ω, we can write

∂S

∂xα

=
Xα

T
(14)

Equilibrium Conditions
Consider now two systems A and A′ in contact which can exchange heat and do

work on each other. A is described by the macroscopic parameters E and x, while A′ is
described by E ′ and x′ where Eo = E + E ′ and xo = x+ x′. Then

Ωo(E, x) = Ω(E, x)Ω′(E ′, x′) (15)

lnΩo(E, x) = lnΩ(E, x) + lnΩ′(E ′, x′) (16)

At equilibrium
d ln Ωo = d(lnΩ + lnΩ′) = 0 (17)

But

d ln Ω =
∂ ln Ω

∂E
dE +

∂ ln Ω

∂x
dx

= βdE + βX dx (18)

and

d ln Ω′ =
∂ ln Ω′

∂E ′
dE ′ +

∂ ln Ω′

∂x′
dx′

= −β′dE − β′X
′

dx (19)

since dE ′ = −dE and dx′ = −dx. The equilibrium condition d ln Ωo = 0 implies

(β − β′)dE + (βX − β′X
′

)dx = 0 (20)

Both coefficients must vanish since E and x are independent variables. Hence the equi-
librium conditions are

β = β′ (21)

and
X = X

′

(22)

where X is any generalized force. So if X is the pressure p, then the pressures and
temperatures are equal in equilibrium.

Quasi–Static Processes
Almost by definition, when a system undergoes a process and changes, it cannot be

exactly described by equilibrium statistical mechanics or thermodynamics. However we
can talk about a quasi–static process in which the system progresses slowly enough to
be arbitrarily close to equilibrium throughout the process. We can think of the system
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progressing through a series of equilibrium states infinitesimally separated from each
other.

Consider first an infinitesimal quasi–static process in which a system A is brought
from an equilibrium state described by mean energy E and external parameter xα to an
infinitesimally different equilibrium state described by E + dE and xα + dxα due to an
interaction with system A′. Since Ω = Ω(E, x1, x2, ..., xn), we can write

d ln Ω =
∂ ln Ω

∂E
dE +

n
∑

α=1

∂ ln Ω

∂xα

dxα

= β

(

dE +
n
∑

α=1

Xαdxα

)

(23)

Let the total mechanical work done by the system be

dW =
n
∑

α=1

Xαdxα (24)

Hence
d ln Ω = β(dE + dW ) = βdQ (25)

since
dQ = dE + dW (26)

This statement is valid for any quasistatic process, even if work of any form is done by
the system. But

TdS =
1

β
d ln Ω = dE + dW = dQ (27)

or

dS =
dQ

T
(28)

This statement is true for any infinitesimal quasi–static processes, even if work is done.
Note that if dQ = 0, then dS = 0. Thus entropy does not change in an infinitesimal,

adiabatic process. An adiabatic process is one in which there is no heat transfer. We can
extend this discussion to a finite process which proceeds quasi–statically through a series
of equilibrium states, and obtain the result that if the external parameters of a thermally

isolated system are changed quasi–statically by a finite amount, then

∆S =
∫

dS = 0 (29)

In other words, the entropy is unchanged. Since ∆S = 0, the number of accessible states
is unchanged. This means that the process is reversible. However, it is worth emphasizing
that even if a system is thermally isolated so that it absorbs no heat, its entropy will
increase if processes take place which are not quasi–static.
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Note that while dQ is an inexact differential, dQ/T is an exact differential, i.e.,

S(final)− S(initial) =
∫ f

i

dQ

T
(30)

provided the path of integration is a series of equilibrium states. Only for equilibrium
states is the entropy a defined concept. Entropy (S = kB ln Ω) just depends on the
equilibrium state of the system and not on how it got there. So the entropy difference is
path independent. The inverse temperature (1/T ) is thus an integrating factor for dQ.
This, in fact, is another way mathematically to define the concept of temperature. The
reciprocal temperature can be defined as the integrating factor of dQ.

Limiting Behavior of Entropy
In quantum mechanics, as the energy of a system decreases, it goes towards its ground

state. The lowest possible energy state of a system is called its ground state. Let’s call the
ground state energy Eo. Corresponding to this energy there is usually only one possible
microstate of the system. Or there may be a relatively small number of such states, all
with the same energy Eo; in this case the ground state is then said to be “degenerate.”
If there is just one state with energy Eo, the ground state is nondegenerate. Then

S(Eo) = kB ln Ω(Eo) = kB ln 1 = 0 (31)

Even if the ground state is degenerate, S ∼ kB ln f which is negligibly small compared
to the entropy at large energy. Since Ω(E) ∼ Ef at large energies, S = kB ln Ω(E) ∼

kBf lnE ∼ kBf which is much larger than S at low energies. In general at low energies
S is vanishingly small and we can write

as E → Eo, S → 0 (32)

We can state this in terms of the temperature. Recall that we can think of the tempera-
ture roughly as the energy per degree of freedom. As the temperature drops, the energy
of the system drops. If we plot the lnΩ versus E, it looks something like:

E

Ωln 

E
o

The slope gives the inverse temperature β = 1/kBT :

β =
∂ ln Ω

∂E
(33)

6



Notice that the slope gets steeper as E → Eo. So

∂β

∂E
< 0 (34)

or
∂T

∂E
> 0 (35)

At Eo the slope is vertical, β = ∞, and T = 0. So as the temperature approaches
zero, the system approaches its ground state, the energy approaches Eo and the entropy
approaches zero.

as T → 0, S → 0 (36)

In applying this, one must be sure that equilibrium arguments apply to the system in
question. Equation (36) is the third law of thermodynamics.

Ideal Gas
It is about time we applied a few of these ideas to a simple system. Perhaps the

simplest nontrivial example of a large collection of particles is the ideal gas. We will come
back to this example several times because of its simplicity. An ideal gas consists of a
collection of noninteracting particles treated as mass points. The only energy available
is the kinetic energy of the particles; no internal excitations, no internal vibrations, no
rotation and no interactions. We will first treat the ideal gas as a simple classical system.

Consider N particles with mass m and momentum ~pi. The particles are identical.
The total energy is

E =
1

2m

N
∑

i=1

~pi · ~pi (37)

In classical statistical mechanics, the total number of microstates is the total volume of
the accessible phase space divided by the volume of a unit cell of phase space. N particles
require 3N spatial coordinates and 3N components of momenta to specify a point in the
6N dimensional phase space. The number of microstates is

Ω(E) =
1

h3N
o

∫ V

0

∫ E+dE

E
(d3~r1...d

3~rNd
3~p1...d

3~pN) (38)

Now the coordinates and momenta are independent. Also each integration over d3~ri yields
a factor of V , the volume of the container in which the gas is contained. We obtain

Ω(E) = V Nχ(E) (39)

where

χ(E) =
1

h3N
o

∫ E+dE

E
(d3~p1...d

3~pN) (40)

Thus
lnΩ(E) = N lnV + lnχ(E) (41)
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The generalized force corresponding to the external parameter V is the pressure p. Thus

p =
1

β

∂ ln Ω

∂V
=

N

β

∂ lnV

∂V
=

N

βV
=

NkBT

V
(42)

or
p = nkBT (43)

where n = N/V is the number of molecules per unit volume. Alternatively one can write
N = νNa where ν is the number of moles of gas present and Na is Avogadro’s number.
Then (43) becomes

pV = νRT (44)

where R = NakB is called the “gas constant.” This equation is known as an equation
of state. It relates the macroscopic parameters pressure, volume, and temperature. We
will talk more about equations of state in our discussion of thermodynamics. In general
equations of state relate p, V , and T . pV = νRT is the equation of state for an ideal gas
and it is the most famous one.

The parameter β is given by

β =
∂ ln Ω

∂E
=

∂ lnχ(E)

∂E
= β(E) (45)

The temperature of an ideal gas is a function only of the total energy and does not
depend on V . We can invert this to say that the mean energy is solely a function of the
temperature

E = E(T ) (46)

For an ideal gas the mean energy E does not depend on the volume. Changing the volume
of the container changes the mean distance between the particles and affects the strength
of their mutual interaction. But in the case of an ideal gas, there are no interactions.
Since the kinetic energies do not depend on the distances between particles, the mean
energy is unaffected by the change in volume. Later we will find the complete relation
between β and E, and find that

E =
3

2
NkBT (47)

The van der Waals gas
Just to show you that there is more than one equation of state, I would like to mention

the van der Waals gas. The molecules in real gases interact with one another and one
approximation to a real gas is known as a van der Waals gas. The equation of state for
a van der Waals gas is

(

p+
a

v2

)

(v − b) = RT (48)

where v = V/ν is the molar volume. a and b are constants. This is an empirical
equation known as the van der Waals equation. van der Waals interactions refer to
spontaneous electronic charge fluctuations on a molecule which produces a short lived
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dipole moment. These fluctuations induce complementary fluctuations on neighboring
molecules and the molecules attract one another. So the molecules are a little closer
together than noninteracting molecules, i.e., the gas is compressed a little bit; the term
a/v2 represents this additional positive pressure. On the other hand there are also short–
range repulsive forces between the molecules which keep them apart sufficiently to prevent
them from occupying the same place at the same time. The term b represents the volume
occupied by the molecules themselves and which must thus be subtracted from the volume
available to any one molecule in the container. Notice that for a = b = 0 or in the limit
of a very dilute gas (v → ∞), (48) reduces to the equation of state for an ideal gas.
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