
LECTURE 3

Statistical Thermodynamics

In this lecture we will introduce two important thermodynamic concepts: temperature
and entropy. We already have intuitive ideas about temperature and entropy. We know
what hot and cold mean. We think of entropy as disorder. But how can we quantify
these concepts and relate them to the microscopics of systems of many particles? That
is the subject of this lecture.
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Consider two macroscopic systems A and A′ with energies E and E ′ respectively.
Divide the energy scale into equal small intervals of magnitude δE and δE ′. We can
then define Ω(E) as the number of microstates of system A with energy between E and
E + δE, and Ω′(E ′) as the number of microstates of system A′ with energy between E ′

and E ′ + δE ′. These two systems may exchange energy with each other, i.e., they are
not thermally isolated from each other.

Let us define the total system Ao as the two interacting systems A+A′ and assume
that Ao has a total energy Eo = E + E ′ which is constant. We assume that energy is
conserved and that Ao is isolated from the remainder of the universe. Let us also assume
that Ao is in equilibrium (i.e., no macroscopic parameters are changing in time). Let us
consider an ensemble of such systems.

The energies E and E ′ may have any values consistent with the constraint E ′ =
Eo−E. Thus the distribution of energy between the two systems is a function of only one
variable, say E. Then the probability of finding system A with energy E is proportional
to Ωo(E), i.e., the probability P (E) of system A having energy E is

P (E) = cΩo(E) (1)

where c is a constant and Ωo(E) is the number of microstates of the total system where
system A has energy E (i.e., an energy between E and E + δE).

But if A has energy E, then system A may be in any one of Ω(E) microstates, and
system A′ may simultaneously be in any of Ω′(E ′) = Ω′(Eo − E) microstates. Thus

Ωo(E) = Ω(E)Ω′(Eo − E) (2)

and
P (E) = cΩ(E)Ω′(Eo − E) (3)



As discussed in Reif, sections 2.5 and 3.3, the quantity Ω(E) is a rapidly increasing
function of its argument. For example, as shown by Reif (section 2.5), for an ideal gas

Ω(E) = BV NE3N/2 (4)

where B is a constant, V is the volume occupied by the ideal gas and N is the number
of gas molecules in the system. Since N is of the order of Avogadro’s number, Ω(E)
is indeed a rapidly increasing function of E. Hence P (E) is the product of a rapidly
increasing function (Ω(E)) and a rapidly decreasing function (Ω′(Eo − E)) of E and
has the behavior shown in the figure. P (E) is a highly peaked function if Ω(E) and
Ω′(Eo − E) are both rapidly varying functions.
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Reif in section 3.7 argues that the fractional width of the peak in P (E) is of order

∆E

E
≈

1√
f

(5)

where f is the number of degrees of freedom in the system, a number of the order of
Avogadro’s number.

So it is highly probable that the combined system will be in a state with the most
probable value of E, which we denote Ẽ. To find Ẽ, we must find the maximum of
the function P (E). Rather than P (E) itself, consider lnP (E) which varies more slowly.
(This will make more sense after we define entropy.) The condition for a maximum is

∂ lnP (E)

∂E
=

1

P

∂P

∂E
= 0 (6)

The value of E satisfying this equation is by definition Ẽ, the most probable energy.
Substituting

lnP (E) = ln c+ lnΩ(E) + lnΩ′(E ′) (7)

yields
∂ lnP (E)

∂E
=

∂ ln Ω(E)

∂E
+

lnΩ′(E ′)

∂E ′

∂E ′

∂E
= 0 (8)
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when E = Ẽ. Or using
∂E ′

∂E
=

∂(Eo − E)

∂E
= −1 (9)

we obtain
∂ ln Ω(E)

∂E
−

∂ ln Ω′(E ′)

∂E ′
= 0 (10)

Now introduce the definition

β ≡
∂ ln Ω(E)

∂E
(11)

Thus the most probable state of the system is characterized by

β(Ẽ) = β′(Ẽ ′) (12)

where Ẽ ′ = Eo − Ẽ. Now let us introduce the definition

β ≡
1

kBT
(13)

where kB is a constant called Boltzmann’s constant and T is a function we will call
temperature. Thus

T ≡ temperature ≡
1

kBβ
(14)

Let us consider for a moment the definition of β in eq. (11). We expect a system to have
more states available as its energy E increases.

Ω(Ε)

EEg

ln

At low temperatures the energy of the system will be close to the ground state energy
Eg and the slope of Ω(E) will be steep, corresponding to large β and low T . At high E,
the slope of Ω(E) is small, corresponding to small β and high temperatures.

Let us introduce one more definition. Define the entropy of a system to be

S ≡ entropy ≡ kB ln Ω (15)

Thus combining these definitions

∂ ln Ω(E)

∂E
=

1

kBT
=

1

kB

∂S

∂E
(16)
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or
1

T
=

∂S

∂E
(17)

The condition of maximum probability corresponds to maximum total entropy according
to eq. (7):

• lnP = maximum =⇒ S + S ′ = maximum

The condition that this occurs can, by eq. (12), be written as

T = T ′ (18)

In other words if we put 2 systems together, they will adjust until they are at the same
temperature and their total entropy is maximized.

Note: One reason for defining entropy as S = kB ln Ω is to obtain a definition that
makes entropy an additive parameter of two interacting systems, i.e, if

S = kB ln Ω (19)

and
S ′ = kB ln Ω′ (20)

then
So = kB ln ΩΩ′ = kB ln Ω + kB ln Ω′ = S + S ′ (21)

The definition of entropy S = kB ln Ω agrees with our intuitive notion of disorder.
The greater the number of accessible states Ω, the larger the number of ways to arrange
things, and the greater the “disorder.”
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Let us explore some of the properties of these two newly defined quantities, entropy
and temperature. Consider the situation where A and A′ are initially separated and
in equilibrium. A has energy Ei and A′ has energy E ′

i. Now assume that A and A′
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are placed in thermal contact with each other so that energy may be exchanged. The
resulting situation just after they are put together is highly unlikely unless just by chance
Ei = Ẽ and E ′

i = Ẽ ′ = Eo − Ẽ. The system will evolve in time until

Ef = Ẽ E ′

f = Ẽ ′ (22)

and P (E) becomes a maximum. At equilibrium the β parameters of the systems are then
equal (their temperatures are equal):

βf = β′

f (23)

where βf ≡ β(Ef ) and β′

f ≡ β′(E ′

f )
The final probability is a maximum and hence is never less than the probability of

the initial situation. In other words

S(Ef ) + S ′(E ′

f ) ≥ S(Ei) + S ′(E ′

i) (24)

Let
∆S ≡ S(Ef )− S(Ei) (25)

and
∆S ′ ≡ S ′(E ′

f )− S ′(E ′

i) (26)

Then
∆S +∆S ′ ≥ 0 (27)

This is one form of the second law of thermodynamics. It says that the entropy never
decreases in any process in an isolated system. Here we have derived it from basic
postulates, primarily from the “equal probability of microstates” postulate.

Let us define the heat added to system A as

Q ≡ Ef − Ei (28)

and the heat added to system A′ as

Q′ ≡ E ′

f − E ′

i (29)

The conservation of energy (also called the first law of thermodynamics) yields

Ef + E ′

f = Ei + E ′

i (30)

or
Q+Q′ = 0 (31)

or
Q = −Q′ (32)
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Note that since the probability (or entropy) increases in this process of heat flow, and if
we assume ∆E = Ef − Ei is an infinitesimal, then, using (7), we can write

∆ lnP =
∂ ln Ω(Ei)

∂E
∆E +

∂ ln Ω′(E ′

i)

∂E ′
∆E ′

=
∂ ln Ω(Ei)

∂E
(Ef − Ei) +

∂ ln Ω′(E ′

i)

∂E ′
(E ′

f − E ′

i)

≥ 0 (33)

where
∂ ln Ω(Ei)

∂E
=

∂ ln Ω(E)

∂E

∣

∣

∣

∣

∣

E=Ei

(34)

But from (11)
1

kBTi

= βi =
∂ ln Ω(Ei)

∂E
(35)

Thus
βiQ+ β′

iQ
′ = (βi − β′

i)Q ≥ 0 (36)

The minus sign comes from one system absorbing heat and the other one losing it. If
Q > 0, then

βi ≥ β′

i (37)

or
Ti ≤ T ′

i (38)

In other words, if the system A′ has a greater value of T than system A (i.e., system A′

is hotter than A), then energy flows from A′ to A. This agrees with our intuitive idea of
temperature that heat flows from hot to cold.

Temperature
Let’s compare this parameter T to our intuitive concept of temperature:

1. If two systems are separately in equilibrium and characterized by the same value
of the temperature parameter, then the systems remain in equilibrium when they
are brought into thermal contact (no heat flows between the two systems).

2. Different values of T imply the systems are not in equilibrium with each other.

3. Heat flows from larger T to smaller T .

4. If two systems are in thermal equilibrium with a third system (i.e. the same T ),
then they must be in thermal equilibrium with each other. This statement is known
as the “zeroth law of thermodynamics.”

One commonly uses a thermometer to determine the temperature. One can make a
thermometer in any one of a number of ways. For example:
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1. The height of mercury in a glass tube is taken as the thermometric parameter θ.

2. Gas in a bulb at constant volume. The mean pressure of the gas is taken as the
thermometric parameter θ.

3. Gas in a bulb at constant pressure. The volume of the gas is taken as the thermo-
metric parameter θ.

4. An electrical conductor at constant pressure that is carrying current. The electrical
resistance is taken as the thermometric parameter θ.

Hence we see that there are numerous ways to measure the temperature. Temperature
is one of the macroscopic parameters used to characterize a system and it is useful to
define an absolute temperature T of a system. In physics we talk in terms of Kelvin
which is based on the absolute temperature. The absolute temperature has 2 important
properties:

1. It is completely independent of the nature of the particular thermometer used to
perform the measurement.

2. The absolute temperature T is a parameter of fundamental significance and enters
theoretical statistical mechanical equations.

The absolute temperature is defined by

T ≡
1

kBβ
(39)

I would like to make one other point about absolute temperature, namely that you
can think of kT as the mean energy per degree of freedom. To see this, start with

Ω(E) ∝ Ef/2 (40)

where f is the number of degrees of freedom of the system and the energy E is measured
with respect to its ground state. This was shown in Reif section 2.5 where Ω(E) =
BV NEf/2 for an ideal gas with f = 3N degrees of freedom. Then

lnΩ(E) ≈
f

2
lnE + constant (41)

Thus when E = Ẽ ≈ E, one gets

β =
∂ ln Ω(E)

∂E
≈

f

2E
(42)

and

kBT ≈
2E

f
(43)
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or
1

2
kBT ≈

E

f
(44)

Thus the quantity kBT/2 is a measure of the mean energy, above the ground state, per
degree of freedom of a system.

Heat Reservoir
Another thermodynamic concept is that of a heat reservoir. A heat reservoir or a

heat bath is much larger (has many more degrees of freedom) than the system in contact
with it. The temperature of the heat bath remains essentially unchanged no matter how
much heat the smaller system absorbs from it. Assume system A′ of our two interacting
systems is very large compared to A. If system A′ has Ω′(E ′) microstates and absorbs
heat Q′ = ∆E ′ from system A, then the resulting change in lnΩ′(E ′) is

lnΩ′(E ′ +Q′)− ln Ω′(E ′) =
∂ ln Ω′

∂E ′
Q′ +

1

2

∂2 ln Ω′

∂E ′ 2
Q′ 2 + ...

= β′Q′ +
1

2

∂β′

∂E ′
Q′ 2 + ... (45)

If ∂β′

∂E′
Q′ ≪ β′ then

lnΩ′(E ′ +Q′)− ln Ω′(E ′) = β′Q′

=
Q′

kBT ′

=
∆S ′

kB
(46)

or

∆S ′ =
Q′

T ′
(47)

The assumption ∂β′

∂E′
Q′ ≪ β′ is the criteria for a heat reservoir. The temperature of the

heat reservoir remains essentially unchanged no matter how much heat it absorbs from
the smaller system.

For any system which absorbs a differential (or infintesimal amount) of heat dQ, then

lnΩ(E + dQ)− ln Ω(E) =
∂ ln Ω(E)

∂E
dQ = βdQ (48)

or, since S = kB ln Ω implies

dS

kB
= lnΩ(E + dQ)− ln Ω(E) (49)

we have

dS =
dQ

T
(50)

where dS is the increase in the entropy of the system.
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