
LECTURE 16

Systems of Interacting Particles
So far we have been considering systems of noninteracting or weakly interacting par-

ticles because these are simple to deal with. However, most systems in the real world are
complicated because they have particles that interact with each other, e.g., liquids and
solids. Our strategy to find the energy eigenvalues, calculate the partition function Z,
and derive the appropriate thermodynamic quantities from lnZ still holds, but it can be
difficult to find the energy eigenvalues. However there are cases of interacting systems
which we can solve.

For example, at low temperatures thermodynamic properties are dominated by the
low energy excited states. So we do not need to find all the energy eigenstates; we just
need to describe these low energy states accurately. If the system is ordered at low
temperatures, these low-lying excited states are “collective modes.” For example, in a
crystal the atoms are located on lattice sites. The collective modes are normal modes
of vibration, i.e., sound waves. Quantized sound waves are called phonons which are
analogous to photons. Another example is a ferromagnet where all the spins are lined
up parallel to each other in the ground state. The low energy excited states correspond
to spin waves which are called magnons when quantized.

We can also sometimes solve interacting systems in the high temperature limit where
kT is large compared to the mean energy of interaction. In the infinite temperature limit
the interactions are negligible. At high temperatures the interactions can be treated as
a perturbation and one can do things like high temperature series expansions.

We will now consider some examples of interacting systems.
Lattice vibrations and normal modes

Consider a solid consisting ofN atoms, each of massmi with position ri = (xi1, xi2, xi3).

The equilibrium position is r
(o)
i . Each atom can vibrate about its equilibrium position.

The displacement from the equilibrium position is

ξiα ≡ xiα − x
(o)
iα where α = 1, 2, or 3 (1)

The kinetic energy of the solid is given by
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where ẋiα = ξ̇iα is the αth component of the velocity of the ith atom.
Since the displacements are small, we can expand the potential energy V = V (r1, ..., rN )

in a Taylor series:
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where i and j go from 1 to N ; and α and γ go from 1 to 3. The derivatives are evaluated
at the equilibrium positions r

(o)
i of the atoms. The first term Vo is the potential energy



when the atoms are in their equilibrium configuration. Since this is a minimum of V , the
first derivative must vanish: [∂V/∂xiα]o = 0, i.e., there is no force on any atom in the
equilibrium configuration. So the first term in the Taylor series vanishes. For the second
term, let
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We can neglect higher order terms since the displacements ξ are small. So we obtain
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and the Hamiltonian becomes
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The kinetic energy is simple since it is just a sum of terms, each of which just involves one
coordinate. But the potential energy is complicated since it involves cross terms coming
from different atoms and different coordinates. This is the result of interactions. Since
the potential energy is quadratic in the coordinates, we can eliminate this complication
by finding the normal modes of the solid. This amounts to making a linear transformation
to a new set of normal coordinates qs:
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such that a proper choice of coefficients Biα,s transforms the Hamiltonian to the simple
(diagonal) form:
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Now we have a sum over independent harmonic oscillators with no cross terms. Each
oscillator has frequency ωs, and its quantum mechanical energy is given by
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where ns = 0, 1, 2 ... The total energy is the sum of these one dimensional harmonic
oscillator energies:

En1,...,n3N
= Vo +

3N
∑

s=1

(

ns +
1

2

)

h̄ωs

= −Nη +
3N
∑

s=1

nsh̄ωs (10)

2



where
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is a constant independent of ns. h̄ωs/2 is the zero point energy. η represents the binding
energy per atom in the solid at absolute zero.

It is now straightforward to calculate the partition function which follows what we
did for the Einstein oscillators (see calculation of the Einstein specific heat in lecture 11).
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Notice that each harmonic oscillator partition function is a geometric series. Recall that
for a geometric series
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So we have
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Now we take the logarithm to get lnZ:
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We can convert this sum into an integral by defining σ(ω)dω to be the number of normal
modes with angular frequencies in the range between ω and ω + dω.
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The mean energy of the solid is
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The heat capacity at constant volume is
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The function σ(ω) is determined by the normal vibrational modes of the solid. However,
regardless of the exact shape of σ(ω), we can make some general statements about the
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high temperature limit. Let ωmax be the highest frequency of the normal mode spectrum
such that:

σ(ω) = 0 if ω > ωmax (19)

If the temperature is high enough such that βh̄ωmax ¿ 1, then βh̄ω ¿ 1 for all relevant
ω, and we can expand the exponential:

eβh̄ω = 1 + βh̄ω (20)

Then for kT À h̄ωmax,

CV = kB

∫

∞

0
σ(ω)dω = 3NkB (21)

since the integral over σ(ω) is simply the total number of modes:
∫

∞

0
σ(ω)dω = 3N (22)

Eq. (21) is the Dulong-Petit law that we obtained earlier by applying the equipartition
theorem.

Debye Approximation
The Debye approximation treats the solid as an elastic continuum and ignores the

discreteness of the atoms. This is a good approximation as long as the wavelength λ of the
elastic vibration is much longer than the mean atomic lattice spacing a, i.e., λÀ a. Long
wavelength corresponds to low frequency modes. Let σc(ω) be the function describing
the number of modes in an elastic continuum. Then we expect σ(ω) ≈ σc(ω) at low

frequencies. This approximation will break down for λ
<
∼ a.

For an elastic continuum, the dispersion relation is ω = csk where cs is the speed of
sound. This has the same form as the dispersion relation for photons. From our previous
derivation for the density of states in lecture 14, we can write
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(2π)3
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)

= 3
V

2π2c3s
ω2dω (23)

where the factor of 3 accounts for the 3 phonon polarizations: 1 longitudinal mode and
2 modes transverse to the direction of propagation with wavevector k.

The Debye approximation approximates σ(ω) with σD(ω) defined by

σD(ω) =

{

σc(ω) for ω < ωD

0 for ω > ωD
(24)

where the “Debye frequency” ωD is chosen so that σD(ω) yields the correct total number
of 3N normal modes: ∫

∞

0
σD(ω)dω =

∫ ωD

0
σc(ω)dω = 3N (25)

This normalization determines ωD:
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0
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V
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ω3
D = 3N (26)
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Solving for ωD yields

ωD = cs

(

6π2N

V

)1/3

(27)

For typical numbers: cs ≈ 5 × 10
5 cm/sec, a ≈ (V/N)1/3 ≈ 1Å, ωD ≈ 10

14 sec−1 ≈ 100
THz. The corresponding wavelength 2πcs/ωD ∼ a. The corresponding Debye temper-
ature ΘD is defined by kΘD ≡ h̄ωD. Typically the Debye temperature is of order 300
K.

Notice that the Debye density of states is quadratic in ω.
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Using the Debye approximation, the heat capacity becomes

CV = kB
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where x = βh̄ω. Using h̄ωD = kBΘD and

V = 6π2N
(
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)3

(29)

we can write

CV = 9NkB

(

T

ΘD

)3 ∫ ΘD/T

0

ex

(ex − 1)2
x4dx (30)

As we have seen, at high temperatures, this reduces to the Dulong-Petit law. At low
temperatures, T ¿ ΘD and we can replace the upper limit of the integral with ∞ and
the integral becomes a constant. As a result, we can see immediately that

CV ∼ T 3 (31)
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More precisely, the integral can be evaluated exactly:
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15
(32)
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5
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T
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(33)

Notice that CV ∼ T 3 at low temperatures (T ¿ ΘD). This provides a reasonably
good fit at low temperatures, though it may be necessary to go to temperatures as low as
T < 0.02ΘD. The Debye specific heat certainly gives better agreement with experiment at
low temperature than the exponential temperature dependence predicted by the Einstein
specific heat (see lecture 11). The Einstein specific heat makes the approximation that
all the oscillators have a single frequency ωE:

σ(ω) ≈ σE(ω) ≈ 3Nδ (ω − ωE) (34)

Plugging this into Eq. (18) and using h̄ωE = kBΘE yields our previous result for the
Einstein heat capacity from lecture 11:

CV = 3NkB

(

θE
T

)2
eθE/T

(eθE/T − 1)
2 (35)

Figure 10.2.2 in Reif shows a comparison of the Debye and Einstein specific heats. Both
have an S-shape:
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The Debye approximation is good for the acoustic phonon modes while the Einstein
approximation is good for the high energy optical phonon modes.

6



k

ω

Debye

Einstein

7


