
LECTURE 14

Quantized Energy Levels
We know from quantum mechanics that the solutions to Schroedinger’s equation

Hψ = Eψ (1)

have quantized energy levels. For example, a particle of mass m in a box with infinitely
high walls, has energy levels given by

En =
n2π2h̄2

2ma2
(2)

where n = 1, 2, 3, .... A harmonic oscillator is another example. The energy eigenvalues
are

En = (n+
1

2
)h̄ω (3)

where n = 0, 1, 2, 3, .... Notice once again that the energy levels are quantized. In this
case they are evenly spaced by an amount ∆E = h̄ω.

Electromagnetic radiation is also quantized. Light can be described as waves or
as particles called photons. A photon has energy hν where ν is the frequency of the
electromagnetic wave. Recall that ω = 2πν and that ν = c/λ where c is the speed of
light. Often one speaks in terms of the wavenumber k = 2π/λ. If we make it a vector

quantity ~k, then we call it a wavevector. This is related to the momentum by ~p = h̄~k
and to the frequency by ω = ck. So if the electromagnetic wave has a short wavelength,
it has a high frequency and the photon carries a lot of energy. Lots of wiggles means lots
of energy. Photons are massless and they travel at the speed of light.

Periodic Boundary Conditions:Counting States
So energy is quantized into discrete energy levels. Each energy level is associated

with a mode or eigenfunction. We have seen that it is often useful to be able to count
the number of modes in a box that have energies between E and E + dE.

Suppose we have a 3 dimensional box whose walls are parallel to the x, y, and z axes
with lengths Lx, Ly, and Lz. Thus the volume is V = LxLyLz. We can solve this as
a particle in a box problem. Inside the box the potential is zero. The eigenmodes are
waves. However, let’s choose boundary conditions such that the solution of Schroedinger’s
equation are wavefunctions that are plane waves:

Ψ = A exp[i(~k · ~r − ωt)] = ψ(~r) exp(−iωt) (4)

This is a propagating wave that is never reflected. So our box can’t have hard walls.
Rather let’s imagine that our box is embedded in an infinite set of similar boxes in each
of which the physical situation is exactly the same. In other words, each of these boxes
is a repeat of the original box.



To describe this situation, we use periodic boundary conditions which we can write as

ψ(x+ Lx, y, z) = ψ(x, y, z)

ψ(x, y + Ly, z) = ψ(x, y, z)

ψ(x, y, z + Lz) = ψ(x, y, z)

If we require our traveling wave solution

ψ(~r) = exp(i~k · ~r) = exp[i(kxx+ kyy + kzz)] (5)

to satisfy these boundary conditions, then we must require that

kx(x+ Lx) = kxx+ 2πnx (6)

where nx is an integer. We can rewrite this as

kx =
2π

Lx

nx (7)

Similarly,

ky =
2π

Ly

ny

kz =
2π

Lz

nz

Here the numbers nx, ny, and nz are any set of integers: positive, negative, or zero.
We can use p = h̄k and E = p2/2m to deduce that

E(nx, ny, nz) =
h̄2

2m
(k2x + k2y + k2z) =

2π2h̄2

m

(

n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)

(8)
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Once again we see that the energy levels are quantized. Notice that for any kind of
macroscopic volume where Lx, Ly, and Lz are large, the energy levels are very closely
spaced.

Now we want to count the number of modes or waves that have wavevectors between
~k = (kx, ky, kz) and ~k + d~k = (kx + dkx, ky + dky, kz + dkz). For given values of ky and
kz, it follows from (7) that the number ∆nx of possible integers nx for which kx lies in
the range between kx and kx + dkx is equal to

∆nx =
Lx

2π
dkx (9)

We see that if Lx is very large, a lot of states can be in the small interval dkx. The same
holds true for dky and dkz. So the number of states that lie between ~k and ~k + d~k is

ρd3k = ∆nx∆ny∆nz =
(

Lx

2π
dkx

)(

Ly

2π
dky

)(

Lz

2π
dkz

)

=
LxLyLz

(2π)3
dkxdkydkz (10)

or

ρd3k =
V

(2π)3
d3k (11)

where d3k ≡ dkxdkydkz is an element of volume in “k space.” Notice that the number of

states ρ is independent of ~k and proportional to the volume V under consideration. So
the “density of states”, i.e., the number of states per unit volume, lying between ~k and
~k + d~k is d3k/(2π)3 which is a constant independent of the magnitude or shape of the
volume V . Note that ρ denotes the number of single particle states.

Using the relation ~p = h̄~k, we can also deduce that the number of states ρpd
3p in the

momentum range between ~p and ~p+ d~p is

ρpd
3p = ρd3k =

V

(2π)3
d3p

h̄3
= V

d3p

h3
(12)

where h = 2πh̄ is the ordinary Planck’s constant. Notice that V d3p is the volume of the
classical 6 dimensional phase space occupied by a particle in a box of volume V and with
momentum between ~p and ~p+ d~p. Thus (12) shows that subdivision of this phase space
into cells of size h3 yields the correct number of quantum states for the particle. If we
compare this to our classical expression V d3p/h3o, we see that our arbitrary length ho is
replaced by Planck’s constant h.

If k–space is isotropic, i.e., the same in every direction, then the number of states in
a spherical shell lying between radii k and k + dk is

ρkdk = ρd3k =
V

(2π)3
(4πk2dk) =

V

2π2
k2dk (13)

If we are considering photons for which ω = ck, then we can plug k = ω/c into (13) to
get the number of states lying between ω and ω + dω.

ρωdω = 2
V

2π2c3
ω2dω (14)
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The factor of 2 comes from the fact that there are 2 photon polarizations. The polariza-
tion refers to the direction of the electric field vector ~E in the electromagnetic radiation.
Since ~E must be perpendicular to ~k, there are 2 polarization directions. We will use (14)
in deriving blackbody radiation. Sometimes the term “density of states” for photons is
used to refer to the number of states per unit volume per unit energy:

N(ω) =
2

2π2c3
ω2 =

1

π2c3
ω2 (15)

The density of states is very useful for converting sums into integrals as we shall see.
Recap

So let’s recap where we are and what we’ve found. If a system with lots of particles
has many–particle states R with energy ER, then the average of some quantity A is given
by

A =
1

Z

∑

R

ARe
−βER (16)

where the partition function Z
Z =

∑

R

e−βER (17)

This is for the canonical ensemble with fixed temperature T and fixed particle number
N . We have seen that lnZ is very useful in finding other quantities. For example,

F = −kBT lnZ (18)

S = kB(lnZ + βE) (19)

E = −∂ lnZ
∂β

(20)

CV =
∂E

∂T

∣

∣

∣

∣

∣

V

(21)

p =
1

β

∂ lnZ

∂V
(22)

But the problem is that it is very difficult to solve Schroedinger’s equation to get ER:

HψR = ERψR (23)

It is much easier to solve Schroedinger’s equation to get single particle energies. So we
consider systems (gases) of noninteracting particles. If we know how many particles are
in each single particle state, then we just sum over all the particles to get the appropriate
average, e.g., the mean energy of the whole system. If we have to treat the particles
quantum mechanically because their wavefunctions overlap or because the temperature
is low, then we need to pay attention to whether the particles are fermions or bosons.
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Fermions can have at most one particle in a state while bosons can have umpteen particles
in a state. So now the mean energy is given by

E =
∑

s

εsns (24)

where the mean number of particles in state s is given by

ns =
1

eβ(εs−µ) ± 1
(25)

+ is for fermions and − is for bosons. It’s usually not easy to do sums, so it would be
nice if we could convert the sum into an integral. That’s why we calculated density of
single particle states. Then we can do the conversion:

∑

s

→
∫

ρ(ε)dε (26)

or
∑

s

→
∫

ρ(ω)dω (27)

So the mean energy becomes

E =
∫

dερ(ε)n(ε)ε (28)

where

n(ε) =
1

eβ(ε−µ) ± 1
(29)

Applications
Now let’s go do some examples of this strategy. We will cover the following examples:

1. Monatomic Ideal Gas

2. Black Body Radiation

3. Electron Gas (electrons in a metal)

4. Bose–Einstein Condensation (if time permits)

Monatomic Ideal Gas
Let’s start with our tried and true example of a monatomic ideal gas in the classical

limit of low density or high temperature. We want to calculate the partition function.
We found earlier that

Z =
ζN

N !
(30)

where ζ is the partition function for one particle.

ζ =
∑

r

e−βεr

=
∑

kx,ky ,kz

exp

[

−βh̄
2

2m

(

k2x + k2y + k2z
)

]

(31)
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where

kx =
2π

Lx

nx ky =
2π

Ly

ny kz =
2π

Lz

nz (32)

Since the number of allowed k states is very large and since these states are very close
together with spacing going as 1/L, we can approximate the sum by an integral. This
is where the density of states comes in handy.

∑

~k

→
∫

ρd3k =
V

(2π)3

∫

d3k =
V

(2π)3

∫

4πk2dk =
V

2π2

∫

k2dk (33)

So

ζ =
V

2π2

∫

∞

0
exp

[

−βh̄
2k2

2m

]

k2dk

=
V

2π2

√
π

4

(

2m

βh̄2

)3/2

=
V

h3
(2πmkBT )

3/2 (34)

and

lnZ = ln

(

ζN

N !

)

= N ln ζ −N lnN +N

= N(ln ζ − lnN + 1)

= N
(

ln
V

N
− 3

2
ln β +

3

2
ln

2πm

h2
+ 1

)

(35)

Hence

E = −∂ lnZ
∂β

=
3

2
NkBT (36)

and

S = kB(lnZ + βE) = NkB

(

ln
V

N
+

3

2
lnT + σo

)

(37)

where

σo ≡
3

2
ln

2πmkB
h2

+
5

2
(38)

This is identical to the result obtained for the purely classical ideal gas except that σo
now has a well defined value with ho = h = Planck’s constant and the Gibbs paradox
has automatically been taken care of.

Blackbody Radiation
Blackbody radiation is a nice example of the statistical mechanics that we have been

discussing. A black body is a perfect absorber and absorbs all the radiation incident
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on it. If its temperature is kept constant, then the amount of power it radiates must
equal the amount of power it absorbs. Otherwise it would heat up or cool off. We can
imagine the black body being kept inside some kind of closed container which is at the
same temperature T . The radiation field inside this enclosure is in equilibrium. In other
words there is a gas of photons in thermal equilibrium inside the enclosure. By thermal
equilibrium, we mean that the average occupation number ns of the single particle states
is given by the Planck distribution that we talked about in lecture 13.

ns =
1

eβεs − 1
(39)

One can imagine making a histogram by counting the photon energy density in each
frequency range from ω to ω + dω. It turns out that this distribution of the energy
density of blackbody radiation is a universal curve that depends only on the temperature
T . In other words if one plots the distribution of the photon energy density (counting
both directions of polarization) as a function of photon (angular) frequency ω, the shape
of the curve is universal and the position of the peak is a function only of the temperature.
When we say that the curve is universal, we mean that it doesn’t depend on the size or
shape of the box, or what the walls are made of. All that matters is the temperature.

Blackbody radiation is historically important in physics for two reasons. The first is
that the measurement of the spectral distribution in the late 1800’s led Planck to come
up with the idea of energy quantization. He couldn’t explain the distribution unless he
postulated that E = hν. This marked the birth of quantum mechanics. The second
reason that blackbody radiation is important is that 3 K black body radiation pervades
the universe and is the remnant of the Big Bang. This radiation is in the microwave
region.

Let’s calculate the distribution of the mean energy density of blackbody radiation.
Since the size and shape of the box don’t matter, let’s imagine a rectangular box of
volume V filled with a gas of photons that are in thermal equilibrium. The box has
edges with lengths Lx, Ly, and Lz such that each of these lengths is much larger than the
longest wavelength of significance. There are 2 factors that determine the energy density
at a given frequency. The first is the average energy in each state s which is given by

nsεs =
εs

eβεs − 1
(40)

If we set εs = h̄ω and ns = n(h̄ω), we can rewrite this to give:

n(h̄ω)h̄ω =
h̄ω

eβh̄ω − 1
(41)

The second factor is the number of states per unit volume whose frequency lies in the
range between ω and ω + dω. This is given by (15)

N(ω)dω =
1

π2c3
ω2dω (42)
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So at temperature T the mean energy density u(ω, T )dω contained in the photon gas
by photons whose frequencies are between ω and ω + dω is given by the product of the
average energy in each single photon state and the density of states which lie in this
frequency range:

u(ω, T )dω = n(h̄ω)h̄ωN(ω)dω =
ω2

π2c3
h̄ω

(eβh̄ω − 1)
dω (43)

We can rewrite this to give:

u(ω, T )dω =
h̄ω3

π2c3
dω

(eβh̄ω − 1)
(44)

This is Planck’s law for the blackbody spectrum.
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We can take the high temperature limit to get the classical limit of this spectrum. In the
high temperature limit, β is small so we can expand the exponential in the denominator:

eβh̄ω − 1 ≈ (1 + βh̄ω)− 1 = βh̄ω (45)

So the high temperature limit of (44) is

u(ω, T )dω ≈ h̄ω3

π2c3(βh̄ω)
dω (46)
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or, using β = 1/kBT , we can write

u(ω, T )dω ≈ ω2kBT

π2c3
dω (47)

This is the Rayleigh–Jeans formula for blackbody radiation. Notice that eqn. (47)
increases as ω2. Therefore the classical spectrum (47) predicts that the energy density
goes to infinity as the frequency goes to infinity. By the end of the 1800’s the black body
spectrum had been measured and the classical formula had been calculated. There was a
clear lack of agreement, so people knew they had a problem. Planck resolved the conflict
by proposing that electromagnetic energy was not continuous, but rather was quantized.
He proposed E = h̄ω (or E = hν) and derived Planck’s law (44). This fit the data very
well, and quantum mechanics was born.

We can rewrite (44) in terms of a dimensionless parameter η:

η ≡ βh̄ω =
h̄ω

kBT
(48)

Planck’s law becomes:

u(η, T )dη =
h̄

π2c3

(

kBT

h̄

)4
η3dη

eη − 1
(49)

If we plot u(η, T ) versus η, the maximum occurs around ηmax ≈ 3.
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So if at temperature T1 the maximum occurs at frequency ω1,max, then at some other
temperature T2 the maximum occurs at ω2,max. This is because

ηmax =
h̄ω1,max

kBT1
=
h̄ω2,max

kBT2
(50)

or
ω1,max

T1
=
ω2,max

T2
(51)

This is called the Wien displacement law. It says that

ωmax ∝ T (52)

This was initially an empirical relation that was deduced from the experimental data.
We see that it also follows from Planck’s law. It is often useful in physics to express
things in terms of dimensionless parameters. The Wien displacement law is an example
of useful scaling relations that can result from this.

We can also calculate the total energy density uo(T ) contained in the photon gas at
temperature T by integrating (44) over frequency:

uo(T ) =
∫

∞

0
u(ω, T )dω (53)

Using (49), we can rewrite this as

uo(T ) =
h̄

π2c3

(

kBT

h̄

)4
∫

∞

0

η3dη

eη − 1
(54)

One can evaluate the integral exactly. The answer is

∫

∞

0

η3dη

eη − 1
=
π4

15
(55)

Using this, one finds

uo(T ) =
π2

15

(kBT )
4

(h̄c)3
(56)

This is known as the Stefan–Boltzmann law. The important point is that the total energy
density goes as the fourth power of the temperature:

uo(T ) ∝ T 4 (57)

Finally the mean pressure p exerted on the walls of the enclosure by the radiation is
simply related to the total energy density:

p =
∑

s

ns

(

−∂εs
∂V

)

T

=
1

3
uo(T ) (58)
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To see where this comes from, recall that

εs = h̄ωs ω = ck (59)

Now use

kx =
2π

Lx

nx ky =
2π

Ly

ny kz =
2π

Lz

nz (60)

to obtain

εs = h̄ck = h̄c
√

k2x + k2y + k2z

= h̄c
(

2π

L

)

√

n2
x + n2

y + n2
z

= 2πh̄cV −1/3
√

n2
x + n2

y + n2
z (61)

where V is the volume. So the pressure associated with state s is

ps = −∂εs
∂V

=
1

3
2πh̄cV −4/3

√

n2
x + n2

y + n2
z =

εs
3V

(62)

So the average pressure for the system is

p =
∑

s

psns =
1

3V

∑

s

nsεs =
E

3V
(63)

or

p =
1

3
uo (64)

(The pressure can also be written as 1
β

(

∂ lnZ
∂V

)

T
= − ∂F

∂V

∣

∣

∣

T
.) The “3” in the denominator

reflects the fact that the box is 3 dimensional. Radiation pressure is quite small, but it
is what gives comets their tails. Solar radiation is what pushes tiny bits of dust and ice
that come from the ice ball away from the sun and produces the tail. The comet tail
always points away from the sun. The power emitted ∼ flux ∼ cuo(T ).

Principle of Detailed Balance
If an object is sitting in a cavity filled with radiation (photons) and is in equilibrium

at temperature T , then the

• power radiated by body = power absorbed by body

If this were not true, the body would be losing or gaining energy and would get cooler or
would heat up. As a result, its temperature would no longer be the same as the ambient
photons at temperature T ; it would no longer be in equilibrium. So it must absorb the
same amount of power as it emits in order to stay in equilibrium.

We can make an even stronger statement. Namely, that in equilibrium the power
radiated and absorbed by the body must be equal for any particular element of area
of the body, for any particular direction of polarization, and for any frequency range.
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To show that this must be true, one could imagine putting a shield or filter around
the object that absorbs all radiation except that, in one small element of area, it is
completely transparent to radiation in one direction with one polarization and in one
narrow frequency range between ω and ω + dω. In the presence of the shield the body
must absorb and emit the same power in order to avoid heating up or cooling off, i.e.,
in order to stay in equilibrium. So the power radiated and absorbed by the body must

be equal for any particular element of area of the body, for any particular direction of

polarization, and for any frequency range. This is called the principle of detailed balance.
The principle of detailed balance is a fundamental result that is based on very general

arguments. Microscopically it is a result of time reversal invariance and the fundamental
assumption of accessible microstates being equally probable in an isolated system. Con-
sider a single isolated system consisting of several weakly interacting parts, e.g., a body
and photons. When these parts are not interacting, the system can be in any one of its
quantum states labeled by indices r, s, etc. When interactions are present, the interac-
tions induce transitions between the states. Let wrs be the transition rate (or transition
probability per unit time) from state r to state s. Under time reversal, t → −t, r → r∗

and s → s∗ where r∗ and s∗ are the time reversed states of r and s. For example, if a
particle has momentum ~p in state r, then it has momentum −~p in state r∗. If the system
is invariant (the same) under time reversal, then

ws∗r∗ = wrs (65)

This expresses the principle of microscopic reversibility. For example, if the body in the
cavity emits a photon with wavevector ~k, then the time reversed process is the absorption
of a photon with wavevector−~k. Microscopic reversibility asserts that these two processes
occur with equal probability.

If we have some initial set A of states labeled by r and some final set B of states
labeled by s, the transition probability from A→ B is given by

WAB =
∑

r

∑

s

Prwrs (66)

where Pr is the probability of being in state r. The probability of landing in state s is
the probability Pr of being in state r multiplied by the transition rate wrs to state s.
Similarly the time reversed process has a transition rate given by

WB∗A∗ =
∑

s∗

∑

r∗
Ps∗ws∗r∗ (67)

But the fundamental postulate of statistical mechanics states that accessible macrostates
are equally probable in an isolated system. So Pr = Ps∗ and

WB∗A∗ = WAB (68)

This is the principle of detailed balance.
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Radiation Emitted by a Body
Let us now apply the principle of detailed balance to a body at temperature T in

equilibrium with radiation (photon gas) inside an enclosure at this temperature. Let
Pi(k, α) be the incident radiation power on a unit area of this body per unit frequency
and solid angle range about the vector k with polarization α. Let a(k, α) be the fraction
of incident power absorbed, the rest being reflected. By the principle of detailed balance,
the power absorbed must equal the power emitted Pe(−k, α) in the opposite direction
−k:

Pe(−k, α) = a(k, α)Pi(k, α) (69)

For a blackbody, a(k, α) = 1; a good absorber is a good emitter and vice-versa. If we
integrate over all directions k̂ and polarizations α, the total power emitted per unit area
into the frequency range between ω and ω + dω is

Pe(ω)dω = a(ω)Pi(ω)dω (70)

In the appendix to these notes, we show that

Pe(ω)dω = a(ω)
[

1

4
cu(ω)dω

]

(71)

It makes sense to see cu(ω) for the flux. The factor of 1/4 comes from geometric consid-
erations. Using Eq. (44), we can write this as

Pe(ω)dω = a(ω)
h̄

4π2c2
ω3dω

eβh̄ω − 1
(72)

The total power P tot
e emitted per unit area of the body is obtained by integrating

Eq. (72) over frequency as we did in Eqs. (54)-(56) to obtain

P tot
e = a

(

1

4
cuo

)

= a
(

σT 4
)

(73)

where uo is given by Eq. (56):

uo(T ) =
π2

15

(kBT )
4

(h̄c)3
(74)

Eq. (73) is another form of the Stefan-Boltzmann law. The Stefan-Boltzmann constant
σ is

σ ≡ π2

60

k4B
c2h̄3

= (5.6697± 0.0029)× 10−5 erg/(sec cm2 deg4) (75)

For a perfect blackbody, a = 1. For something shiny like gold, a ≈ 0.01.
Appendix: Calculation for Radiation Emitted by a Body

Let Pi(k, α) be the incident radiation power on a unit area of this body per unit
frequency and solid angle range about the vector k with polarization α. Let a(k, α) be
the fraction of incident power absorbed, the rest being reflected. By the principle of
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detailed balance, the power absorbed must equal the power emitted Pe(−k, α) in the
opposite direction −k:

Pe(−k, α) = a(k, α)Pi(k, α) (76)

For a blackbody, a(k, α) = 1; a good absorber is a good emitter and vice-versa.
Let us now calculate explicitly the power Pi(k, α) incident per unit area of a body

in an enclosure at temperature T . This is the incident energy flux. Let f(k)d3k be the
mean number of photons per unit volume with a given polarization whose wavevector
lies between k and k + dk. So (c dt cos θ)f(k)d3k photons of a given frequency and
polarization strike a unit area of the body in a time dt. Since each photon carries energy
h̄ω, one obtains

Pi(k, α)dωdΩ = (h̄ω)(c cos θf(k)d3k) (77)

k Area dA
θ

z

c dt

Converting d3k to spherical coordinates and using k = ω/c, we obtain

d3k = k2dkdΩ =
ω2

c3
dωdΩ (78)

and

Pi(k, α)dωdΩ =
h̄ω3

c2
f(k)dωdΩcos θ (79)

If the body absorbs isotropically, then the fraction of incident radiation absorbed is
a(k, α) = a(ω), i.e., a is independent of the direction k. We are also assuming a is
independent of the polarization direction. So the power emitted in the direction k

′ = −k

is
Pe(k

′, α) = a(ω)Pi(k, α) (80)

Now let us find the total power Pe(ω)dω emitted per unit area into the frequency
range between ω and dω for both polarization directions by integrating over the solid
angle. Using dΩ = sin θdθdφ and multiplying by 2 for both polarizations, we write

Pe(ω)dω = 2
∫

Ω
Pe(k

′, α)dωdΩ
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= a(ω)
2h̄ω3

c2
f(k)dω

(

2π
∫ π/2

0
cos θ sin θdθ

)

= a(ω)
2πh̄ω3

c2
f(k)dω (81)

The right hand side is proportional to (h̄ω)f(k)d3k, i.e., to the mean radiation density
u(ω)dω inside the enclosure. We found earlier in studying blackbody radiation that

f(k)d3k = n(h̄ω)
d3k

(2π)3
=

1

eβh̄ω − 1

d3k

(2π)3
(82)

or

f(k) =
1

(2π)3
1

eβh̄ω − 1
(83)

We can relate this to the expression for the mean radiation density (Eq. (44)):

u(ω, T )dω =
h̄ω3

π2c3
dω

(eβh̄ω − 1)

=
8πh̄ω3

c3
f(k)dω (84)

Now we can write

Pe(ω)dω = a(ω)
[

1

4
cu(ω)dω

]

(85)

It makes sense to see cu(ω) for the flux. This is Eq. (71) in the lecture notes.
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