
LECTURE 13

Maxwell–Boltzmann, Fermi, and Bose Statistics
Suppose we have a gas of N identical point particles in a box of volume V. When we

say “gas”, we mean that the particles are not interacting with one another. Suppose we
know the single particle states in this gas. We would like to know what are the possible
states of the system as a whole. There are 3 possible cases. Which one is appropriate
depends on whether we use Maxwell–Boltzmann, Fermi or Bose statistics. Let’s consider
a very simple case in which we have 2 particles in the box and the box has 2 single
particle states. How many distinct ways can we put the particles into the 2 states?

Maxwell–Boltzmann Statistics: This is sometimes called the classical case. In this
case the particles are distinguishable so let’s label them A and B. Let’s call the 2 single
particle states 1 and 2. For Maxwell–Boltzmann statistics any number of particles can
be in any state. So let’s enumerate the states of the system:

Single Particle State 1 2

-----------------------------------------------------------------------

AB

AB

A B

B A

We get a total of 4 states of the system as a whole. Half of the states have the particles
bunched in the same state and half have them in separate states.

Bose–Einstein Statistics: This is a quantum mechanical case. This means that the
particles are indistinguishable. Both particles are labelled A. Recall that bosons have
integer spin: 0, 1, 2, etc. For Bose statistics any number of particles can be in one state.
So let’s again enumerate the states of the system:

Single Particle State 1 2

-----------------------------------------------------------------------

AA

AA

A A

We get a total of 3 states of the system as a whole. 2/3 of the states have the particles
bunched in the same state and 1/3 of the states have them in separate states.

Fermi Statistics: This is another quantum mechanical case. Again the particles are
indistinguishable. Both particles are labelled A. Recall that fermions have half–integer
spin: 1/2, 3/2, etc. According to the Pauli exclusion principle, no more than one particle
can be in any one single particle state. So let’s again enumerate the states of the system:

Single Particle State 1 2

-----------------------------------------------------------------------

A A



We get a total of 1 state of the system as a whole. None of the states have the particles
bunched up; the Pauli exclusion principle forbids that. 100% of the states have the
particles in separate states.

This simple example shows how the type of statistics influences the possible states of
the system.

Distribution Functions
We can formalize this somewhat. We consider a gas of N identical particles in a

volume V in equilibrium at the temperature T . We shall use the following notation:

• Label the possible quantum states of a single particle by r or s.

• Denote the energy of a particle in state r by εr.

• Denote the number of particles in state r by nr.

• Label the possible quantum states of the whole gas by R.

Since the particles in the gas are not interacting or are interacting weakly, we can describe
the state R of the system as having n1 particles in state r = 1, n2 particles in state r = 2,
etc. The total energy of the state is

ER = n1ε1 + n2ε2 + n3ε3... =
∑

r

nrεr (1)

Since the total number of particles is N , then we must have

∑

r

nr = N (2)

The partition function is given by

Z =
∑

R

e−βER =
∑

R

e−β(n1ε1+n2ε2+...) (3)

Here the sum is over all the possible states R of the whole gas, i.e., essentially over all
the various possible values of the numbers n1, n2, n3, ...

Now we want to find the mean number ns of particles in a state s. Since

PR =
e−β(n1ε1+n2ε2+...)

Z
(4)

is the probability of finding the gas in a particular state where there are n1 particles in
state 1, n2 particles in state 2, etc., one can write for the mean number of particles in a
state s:

ns =
∑

R

nsPR =

∑

R nse
−β(n1ε1+n2ε2+...)

Z
(5)
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We can rewrite this as

ns =
1

Z

∑

R

(

−
1

β

∂

∂εs

)

e−β(n1ε1+n2ε2+...) = −
1

βZ

∂Z

∂εs
(6)

or

ns = −
1

β

∂ lnZ

∂εs
(7)

So to calculate the mean number of particles in a given single–particle state s, we just
have to calculate the partition function Z and take the appropriate derivative. We want
to calculate ns for Maxwell–Boltzmann, Bose and Fermi statistics.

Maxwell–Boltzmann Statistics
Let us begin by considering the classical case of Maxwell–Boltzmann statistics. In

this case the particles are distinguishable but identical, so each particle has the same set
of single particle energy levels. As a result we can write the partition function as

Z = ζN (8)

where the single particle partition function is

ζ =
∑

r

e−βεr (9)

Then

lnZ = N ln ζ = N ln

(

∑

r

e−βεr

)

(10)

Now we can calculate the mean occupation number

ns = −
1

β

∂ lnZ

∂εs
= −

1

β
N

−βe−βεs

∑

r e−βεr
(11)

or

ns = N
e−βεs

∑

r e−βεr
(12)

This is called the “Maxwell–Boltzmann distribution.” It is the same as our previous
result when we applied the canonical distribution to N independent single particles in a
classical system. The sum over r is a sum over single particle states.

Alternative Derivation of Maxwell–Boltzmann Partition Function We can write the
partition function of the gas as

Z =
∑

R

e−β(n1ε1+n2ε2+...) (13)

Here we are summing over all possible states R of the gas, i.e., over all values

nr = 0, 1, 2, 3, ... for each r (14)

3



subject to the restriction
∑

r

nr = N (15)

Since this is a classical system, the particles have to be considered distinguishable. Thus
any permutation of two particles in different states must be counted as a distinct state
of the whole gas even though the numbers n1, n2, n3, ... are left unchanged. This was the
case in our simple example. It is not enough to specify how many particles are in each
single–particle state, but it is necessary to specify which particular particle is in which
state. For a given set of values n1, n2, n3, ..., there are

N !

n1!n2!...
(16)

possible ways in which the particles can be put into the given single particle states with
n1 particles in state 1, n2 particles in state 2, etc. This is the number of distinct states
since the particles are distinguishable. Hence

Z =
∑

n1,n2,...

N !

n1!n2!...
e−β(n1ε1+n2ε2+...)

=
∑

n1,n2,...

N !

n1!n2!...

(

e−βε1
)n1

(

e−βε2
)n2

... (17)

Because of (15), this last expression is just a multinomial expansion. So we can write

Z =
(

e−βε1 + e−βε2 + ...
)N

(18)

or

lnZ = N ln

(

∑

r

e−βεr

)

(19)

where
∑

r e
−βεr is just the partition function for a single particle. This is what we got

before.
Bose–Einstein and Photon Statistics

Here the particles are to be considered as indistinguishable, so that the state of the
gas can be specified by merely listing the number of particles in each single particle state:
n1, n2, n3, .... Since there is no limit to the number of particles that can occupy a state,
ns can equal 0,1,2,3,... for each state s. For photons the total number of particles is
not fixed since photons can readily be emitted or absorbed by the walls of the container.
Let’s calculate ns for the case of photon statistics. The partition function is given by

Z =
∑

R

e−β(n1ε1+n2ε2+...) (20)

where the summation is over all values nr = 0, 1, 2, 3, ... for each r, without any further
restriction. We can rewrite (20) as

Z =
∑

n1,n2,...

e−βn1ε1e−βn2ε2e−βn3ε3 ... (21)
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or

Z =





∞
∑

n1=0

e−βn1ε1









∞
∑

n2=0

e−βn2ε2









∞
∑

n3=0

e−βn3ε3



 ... (22)

But each sum is a geometric series whose first term is 1 and where the ratio between
successive terms is exp(−βεr). Thus it can be easily summed:

∞
∑

ns=0

e−βnsεs = 1 + e−βεs + e−2βεs + ... =
1

1− e−βεs
(23)

Hence eq. (22) becomes

Z =
(

1

1− e−βε1

)(

1

1− e−βε2

)(

1

1− e−βε3

)

... (24)

or
lnZ = −

∑

s

ln
(

1− e−βεs
)

(25)

So if we plug this into eqn. (7), we get

ns = −
1

β

∂ lnZ

∂εs
=

1

β

∂

∂εs
ln
(

1− e−βεs
)

=
e−βεs

1− e−βεs
(26)

or

ns =
1

eβεs − 1
(27)

This is called the “Planck distribution.” We’ll come back to this a bit later when we talk
about black body radiation.

Photons are bosons, but their total number is not conserved because they can be
absorbed and emitted. Other types of bosons, however, do have their total number
conserved. One example is 4He atoms. A 4He atom is a boson because if you add the
spin of the proton, neutron, and 2 electrons, you always will get an integer. If the number
of bosons is conserved, then ns must satisfy the condition

∑

s

ns = N (28)

where N is the total number of bosons in the system. In order to satisfy this condition,
one slightly modifies the Planck distribution. The result is known as the Bose–Einstein
distribution

ns =
1

eβ(εs−µ) − 1
(29)

where µ is the chemical potential. µ is adjusted so that eq. (28) is satisfied. Physically
µ is the change in the energy of the system when one particle is added. Eqn. (29) is
called the Bose–Einstein distribution function or the Bose distribution function for short.
Often one writes this as a function of energy:

n(ε) =
1

eβ(ε−µ) − 1
(30)

n(ε) is also called the Bose-Einstein distribution.
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Notice that if ε < µ, then n(ε) < 0 which doesn’t make much sense. The Bose distribution
only makes sense for ε > µ.

We can explicitly derive (29). In order to satisfy the condition (28), one multiplies
the partition function by a fudge factor exp(−αN). α is then adjusted to satisfy eqn.
(28). α is an example of what is called a Lagrange multiplier.

Z =
∑

R

e−β(n1ε1+n2ε2+...)e−αN

=
∑

R

e−β(n1ε1+n2ε2+...)e−α(n1+n2+...)

=
∑

n1,n2,...

e−(α+βε1)n1−(α+βε2)n2−...

=





∞
∑

n1=0

e−(α+βε1)n1









∞
∑

n2=0

e−(α+βε2)n2



 ... (31)

(32)

We use Z instead of Z because we have an extra factor of exp(−αN). Z is the “grand
partition function” that we met when we discussed the grand canonical ensemble. This
is just a product of simple geometric series. Hence

Z =
(

1

1− e−(α+βε1)

)(

1

1− e−(α+βε2)

)

... (33)

or
lnZ = −

∑

r

ln
(

1− e−(α+βεr)
)

(34)

Recall that when we discussed the grand canonical ensemble and the grand partition
function, we set

α = −βµ (35)

where µ is the chemical potential. We are basically assuming that we have a system of
weakly interacting bosons in contact with both an energy and particle number reservoir,
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and that the temperature T and the chemical potential µ are fixed by the reservoir. So
we can rewrite (34) to obtain the grand partition function:

lnZ = −
∑

r

ln
(

1− e−β(εr−µ)
)

(36)

We can now calculate the average value of N :

N =
1

Z

∑

R

Ne−β(n1ε1+n2ε2+...)eβµN

=
1

β

1

Z

∂

∂µ

∑

R

e−β(n1ε1+n2ε2+...)eβµN

=
1

β

1

Z

∂Z

∂µ

=
1

β

∂ lnZ

∂µ

=
1

β

∂

∂µ

[

−
∑

r

ln
(

1− e−β(εr−µ)
)

]

=
1

β

∑

r

βe−β(εr−µ)

1− e−β(εr−µ)

=
∑

r

1

eβ(εr−µ) − 1
(37)

µ is fixed by setting N = N where N is the total number of bosons in the system.
Finally we will calculate the average number of bosons in state s:

ns =
1

Z

∑

states

nse
−β(n1ε1+n2ε2+...)eβµ(n1+n2+...)

=
1

Z

(

−
1

β

∂

∂εs

)

∑

states

e−β(n1ε1+n2ε2+...)eβµ(n1+n2+...)

= −
1

β

∂ lnZ

∂εs

= −
1

β

∂

∂εs

[

−
∑

r

ln
(

1− e−β(εr−µ)
)

]

= −
1

β

(−β)e−β(εs−µ)

1− e−β(εs−µ)
(38)

or

ns =
1

eβ(εs−µ) − 1
(39)

Note that we can recover the result for photons by setting µ = 0. Also note that

N =
∑

s

ns (40)
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We will return to the Bose–Einstein distribution when we discuss black body radiation.
Fermi–Dirac Statistics

Recall that fermions have half–integer spin statistics and that at most one fermion
can occupy each single particle state. This means that ns = 0 or 1. We can easily get
some idea of what ns is by considering the very simple case of a system with just one
single particle state. In this case

ns =

∑

ns
nse

−βnsεs

∑

ns
e−βnsεs

(41)

In this case the sums just have 2 terms. The denominator is

∑

ns=0,1

e−βnsεs = 1 + e−βεs (42)

The numerator is
∑

ns=0,1

nse
−βnsεs = 0 + e−βεs (43)

So we have

ns =
e−βεs

1 + e−βεs
(44)

or

ns =
1

eβεs + 1
(45)

For a real system we have many single particle states and many particles. The expression
for ns in this case must satisfy the condition that the number of particles is a constant:

∑

s

ns = N (46)

The correct formula which satisfies this condition (46) is

ns =
1

eβ(εs−µ) + 1
(47)

Often one writes this as a function of energy:

f(ε) =
1

eβ(ε−µ) + 1
(48)

f(ε) is called the Fermi distribution function. µ is adjusted to satisfy the constraint (46).
As in the Bose–Einstein case, µ is called the chemical potential. This is basically the
same as the Fermi energy. Notice that f(ε = µ) = 1/2. This is always true of the Fermi
distribution.
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µ(Τ=0)=

1

F
E

T > 0

T = 0

Fermi Distribution Functionf (E)

E

We can formally derive the Fermi distribution in much the same way as we derived
the Bose distribution. We once again consider a system of weakly interacting fermions
in contact with both an energy and a particle number reservoir. The grand partition
function is given by

Z =
∑

states

e−β(E−µN)

=
∑

n1,n2,n3,...

e−β(n1ε1+n2ε2+...)eβµ(n1+n2+...)

=
∑

n1,n2,n3,...

e−β(ε1−µ)n1e−β(ε2−µ)n2 ...

=





1
∑

n1=0

e−β(ε1−µ)n1









1
∑

n2=0

e−β(ε2−µ)n2



 ...

=
(

1 + e−β(ε1−µ)
) (

1 + e−β(ε2−µ)
)

...

=
∏

r

(

1 + e−β(εr−µ)
)

(49)

and
lnZ =

∑

r

ln
(

1 + e−β(εr−µ)
)

(50)

So the mean number of particles in the system is

N =
1

β

∂ lnZ

∂µ
=

1

β

∑

r

βe−β(εr−µ)

1 + e−β(εr−µ)
(51)

or

N =
∑

r

1

eβ(εr−µ) + 1
(52)

The mean number of fermions in state s is

ns = −
1

β

∂

∂εs
lnZ = −

1

β

(−β)e−β(εs−µ)

1 + e−β(εs−µ)
(53)
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or

ns =
1

eβ(εs−µ) + 1
(54)

Note that
N =

∑

s

ns (55)

We will return to this when we discuss metals.
Summary

For future reference the two expressions for the average number of particles in the
sth state for bosons and fermions are:

ns =
1

eβ(εs−µ) − 1
bosons (56)

ns =
1

eβ(εs−µ) + 1
fermions (57)

(58)

A more succinct way to write our results for the quantum statistics of ideal gases is

ns =
1

eβ(εs−µ) ± 1
(59)

where the upper sign refers to Fermi statistics and the lower sign refers to Bose statistics.
If the gas consists of a fixed number of particles, µ is determined by

∑

s

ns =
∑

s

1

eβ(εs−µ) ± 1
= N (60)

In general the number N of particles is much smaller than the total number of single
particle states s.

Classical Limit
Let us consider 2 limiting cases. Consider the low density limit where N is very

small. The relation (60) can then only be satisfied if each term in the sum over all states
is sufficiently small, i.e., if ns ≪ 1 or exp[β(εs − µ)] ≫ 1 for all states s.

The other case to consider is the high temperature limit. Since β = 1/kBT , the high
temperature limit corresponds to small β. Now if β were 0, we would have

∑

s

1

1± 1
= N (61)

which is a disaster for both the Fermi–Dirac and Bose–Einstein cases. But β = 0 means
that T = ∞. Let’s assume that the temperature is high but not infinite, so that β is
small but not 0. At high temperatures, lots of high energy states are occupied. By “high
energy,” I mean that εs ≫ µ. In order to satisfy the fixed N constraint of eqn. (60), it
is necessary to have

exp[β(εs − µ)] ≫ 1 (62)
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such that
ns ≪ 1 (63)

for all states s. (Remember that there are many more states s than particles N .) This is
the same condition that came up in the low density case. We call the limit of sufficiently
low concentration or sufficiently high temperature where (62) or (63) are satisfied the
“classical limit.” In this limit ns reduces to

ns = e−β(εs−µ) (64)

Plugging this into (60), we get
∑

s

ns =
∑

s

e−β(εs−µ) = eβµ
∑

s

e−βεs = N (65)

or

eβµ =
N

∑

s e−βεs
(66)

Thus

ns = N
e−βεs

∑

s e−βεs
(67)

Hence we see that in the classical limit of sufficiently low density or sufficiently high tem-
perature, the Fermi–Dirac and Bose–Einstein distribution laws reduce to the Maxwell–
Boltzmann distribution.

Relation of Z and Z

In deriving the Bose–Einstein and Fermi–Dirac distributions, we used the grand
canonical partition function. We can use Z to obtain an excellent approximation to
the canonical partition function. We can write

Z =
∑

all states

e−β(E−µN)

=
∑

all states

e−βEeβµN

=
∞
∑

N ′=0

eβµN
′

∑

all states with N ′ particles

e−βE

=
∞
∑

N ′=0

eβµN
′

Z(N ′) (68)

where Z(N ′) is the canonical partition function for N ′ particles. Since Z(N ′) is a rapidly
increasing function of N ′ and eβµN

′

is a rapidly decreasing function of N ′ (for µ < 0),
the grand partition function is sharply peaked at N ′ = N . So we can write

Z =
∞
∑

N ′=0

eβµN
′

Z(N ′)

= Z(N)eβµN (∆∗N ′) (69)
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where the width of the peak is ∆∗N ′. Thus

lnZ = lnZ(N) + βµN + ln (∆∗N ′)
∼= lnZ(N) + βµN (70)

since ln (∆∗N ′) is negligible. Or

lnZ = −βµN + lnZ (71)

This is the relation between the partition function Z and the grand partition function
Z.

Chemical Potential
Since eβµN

′

Z(N ′) is a sharply peaked function at N ′ = N , we can use this to derive

an expression for the chemical potential µ. Consider ln
[

eβµN
′

Z(N ′)
]

. By definition the
maximum of this is given by

∂

∂N ′
[lnZ(N ′) + βµN ′] =

∂ lnZ(N ′)

∂N ′
+ βµ = 0 (72)

or

µ = −
1

β

∂ lnZ(N)

∂N
= −kBT

∂ lnZ(N)

∂N
=

∂F

∂N
(73)

This is useful for calculating the chemical potential µ.

Other Conventions for the Grand Canonical Ensemble
In some books, the fugacity y is defined by

y = eβµ (74)

(Some books use z or λ to denote the fugacity.) The grand partition function is given in
terms of the fugacity by

Z(V, T, y) ≡
∞
∑

Nr=0

yNrZNr
(V, T ) (75)

with Z0 ≡ 1. In the grand canonical ensemble, pressure is defined by

PV = kBT lnZ(V, T, y) (76)

where V is volume. Some books define a thermodynamic potential Ω(V, T, y) by

Ω(V, T, y) = −PV = −kBT lnZ(V, T, y) (77)

(Do not confuse the thermodynamic potential with the number of microstates of a system,
even though both are sometimes denoted by Ω.) In terms of the grand partition function,
the mean number of particles N is

N = y

[

∂

∂y
lnZ(V, T, y)

]

V,T

(78)
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and the mean energy E is

E = −

[

∂

∂β
lnZ(V, T, y)

]

y,V

(79)

(One can compare this to Eq. (70) in Lecture 9

E = µN −

[

∂

∂β
lnZ

]

µ,V

(80)

to see the importance of noting what is kept constant and what isn’t in taking derivatives.)
The first law of thermodynamics then becomes

∆E = Q−W + µ∆N (81)

or, in differential form,
dE = TdS − pdV + µdN (82)

Gibbs’ Paradox Revisited
Now back to eq. (71). Plugging in Z for bosons from (34), we have

lnZ = −βµN −
∑

r

ln
(

1− e−β(εr−µ)
)

(83)

Similarly for fermions eq. (50) yields

lnZ = −βµN +
∑

r

ln
(

1 + e−β(εr−µ)
)

(84)

We can combine these two expressions:

lnZ = −βµN ±
∑

r

ln
(

1± e−β(εr−µ)
)

(85)

At high temperatures e−β(εr−µ) is small and we can expand the logarithm to obtain

lnZ = −βµN ±
∑

r

(

±e−β(εr−µ)
)

= −βµN +N (86)

where in the last step we used the high temperature limit of the Bose and Fermi distri-
butions:

∑

r

nr = N

∑

r

1

eβ(εr−µ) ± 1
= N

∑

r

e−β(εr−µ) = N at high temperature

eβµ
∑

r

e−βεr = N (87)
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Taking the logarithm of both sides of (87) yields

βµ+ ln

(

∑

r

e−βεr

)

= lnN (88)

or

−βµ = − lnN + ln

(

∑

r

e−βεr

)

(89)

Plugging this into (86), we get

lnZ = −βµN +N

= −N lnN +N +N ln

(

∑

r

e−βεr

)

(90)

The first two terms are Stirling’s approximation to N !:

lnN ! ∼= N lnN −N (91)

The last term in (90) is the Maxwell–Boltzmann partition function.

lnZMB = N ln

(

∑

r

e−βεr

)

(92)

So (90) becomes
lnZ = − lnN ! + lnZMB (93)

or

Z =
ZMB

N !
(94)

This was the resolution to the Gibbs paradox. Without quantum mechanics we had to
put in the factor N ! by hand. But now we see that the indistinguishability of the particles
comes out naturally.
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