
LECTURE 12

Maxwell Velocity Distribution

Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute
enough, we can ignore the interactions between the molecules and the energy will not
depend on the positions of the molecules. Let f(~r,~v)d3rd3v be the mean number of
molecules with center of mass position between ~r and ~r+ d~r and velocity between ~v and
~v + d~v. Then

f(~r,~v)d3rd3v = Ce−β(mv2/2)d3rd3v (1)

where C is a constant determined by normalization. Here we have used the Boltzmann
distribution e−βE with the energy E being the kinetic energy of the system mv2/2. The
contribution to the energy from internal states or degrees of freedom doesn’t affect the
velocity; these internal states are summed over (

∑

r exp(−βεr)) and will just contribute
to C. The constant C is determined by the condition

∫

d3r
∫

d3vf(~r,~v) = N (2)

We can evaluate the integrals to obtain C:
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C = n

(

βm

2π

)3/2

(4)

where n ≡ N/V is the total number of molecules per unit volume. Hence

f(~v)d3rd3v = n

(

βm

2π

)3/2

e−βmv2/2d3rd3v (5)

or

f(~v)d3rd3v = n
(

m

2πkT

)3/2

e−mv2/2kTd3rd3v (6)

We have omitted ~r from the argument of f since f doesn’t depend on ~r. Equation (6)
is known as the Maxwell velocity distribution for a dilute gas in thermal equilibrium.
Notice that it is a Gaussian distribution centered at v = 0. Recall that the exponential
factor in a Gaussian distribution has the form exp(−x2/2σ2) where 2σ is the width of

the distribution. Then the width of the Maxwell velocity distribution is σ =
√

kT/m.
Notice that the width increases as the temperature increases. This means there are more
hot molecules at higher temperatures. By “hot” molecules I mean ones with large |v|.



This applies for both positive and negative velocities because in (6) v2 = v2
x + v2

y + v2
z

and each component of velocity can be positive or negative.
Quantum Statistics

So far we have mostly concentrated on systems where classical mechanics is applicable.
We have invoked quantum mechanics only to the extent that we had to acknowledge
that quantum mechanically systems have discrete states and discrete energy levels. This
becomes particularly apparent at low temperatures. We also noted that identical particles
are indistinguishable. That’s how we resolved the Gibbs paradox. Now we need to include
some more quantum mechanics in order to treat the statistics of systems of identical
particles where the classical approximation no longer is valid. Before we get to quantum
statistics, let’s go over some preliminaries.

Quantum Numbers
In your quantum mechanics course, when you solved the problem of a particle in a

one dimensional box, you labelled the eigenvalues and eigenvectors with an integer n.

Hψn = Enψn (7)

where

En =
n2π2h̄2

2ma2
(8)

with n = 1, 2, 3, .... n is an example of a quantum number. It’s a number which char-
acterizes an eigenstate of the system. It changes from eigenstate to eigenstate, but if
the system is in that eigenstate, it remains in that eigenstate and the quantum numbers
describing that state don’t change either. This is why an eigenstate is called a stationary
state. Typically the quantum numbers are associated with symmetries. Symmetry means
that the system looks the same under certain operations. For example if the system is
invariant under time translation, then the Hamiltonian is time independent, and energy
is conserved. This was true of the case of a particle in a box, and we labelled the energy
eigenstates by n.

Another possible symmetry is spatial translation. If the potential is invariant under
spatial translation, then momentum is a good quantum number. This would be true of
a constant potential or if there were no potential. Classically momentum is conserved
as long as the system is not subjected to a force. So if ~F = d~p/dt = 0, then ~p =

constant. The force is the gradient of the potential: ~F = −∇V (~r). So momentum is a
good quantum number as long as the potential does not vary spatially, i.e, as long as it’s
constant. (We don’t usually refer to forces in quantum mechanics.) If the potential is
constant or zero, then we have a free particle with momentum ~p, energy E = p2/2m and
ψ ∼ exp(i~p · ~r/h̄).

Another way to define a conserved quantity is to recall the Heisenberg equation of
motion. For wavefunctions, it takes the form

ih̄
∂ψ

∂t
= Hψ (9)
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There is also an equation of motion for operators. Let Â be some operator. Its equation
of motion is

ih̄
∂Â

∂t
= [Â, Ĥ] (10)

So if ih̄∂Â/∂t = 0, then we must have [Â, Ĥ] = 0. This is the condition that A is a
constant of the motion and is a conserved quantity. So if momentum is a conserved
quantity, then it commutes with the Hamiltonian:

[Ĥ, p̂] = Ĥp̂− p̂Ĥ = 0 (11)

But this is getting too technical.
Angular Momentum

Angular momentum is another quantity that is conserved. There are two basic types
of angular momentum: orbital and spin. Classically the orbital angular momentum
is conserved as long as there is no torque on the system. In quantum mechanics we
don’t usually talk about torque. Rather we say that orbital angular momentum is a
good quantum number if the system has continuous rotational symmetry. By rotational
symmetry, I mean that if you rotate the system in some way, like by an angle θ about the
z axis, it still looks the same. An atom is a spherical kind of object, and it has rotational
symmetry.

Spin angular momentum is an internal angular momentum that is associated with
a particle. (If the particle has rotational symmetry in spin space, then spin is a good

quantum number.) The spin operator is denoted by ~S. There are 2 quantum numbers
associated with spin angular momentum: s and sz. Sometimes sz is denoted by ms. If
spin is a good quantum number, then the energy eigenstate ψn is also an eigenstate of
Ŝ2 and Ŝz:

Ŝ2ψn = h̄2s(s+ 1)ψn (12)

and
Ŝzψn = h̄szψn (13)

(In terms of commutators, [Ĥ, Ŝ2] = 0, [Ĥ, ~̂S] = 0, and [Ŝ2, ~̂S] = 0.) It turns out that sz
has a range of values:

sz = −s,−s+ 1, ..., s− 1, s (14)

There are 2s+1 values of sz. s can be either an integer or a half–integer. Particles with
integer spin are called bosons and particles with half–integer spin are called fermions. An
example of a fermion is an electron. An electron is a spin-1/2 particle, i.e., s = 1/2, and
it has 2 spin states: spin up (which corresponds to sz = +1/2) and spin down (which
corresponds to sz = −1/2). Protons and neutrons are also spin–1/2 particles and are
therefore fermions.

An example of a boson is a photon. A photon is a spin–1 particle, i.e, s = 1, and it
has sz = −1 or sz = +1. It turns out not to have sz = 0. This is related to the fact that
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there are 2 possible polarizations of the electric field ~E and that ~E⊥~k, where ~k points in
the direction of propagation of the electromagnetic wave.

Adding Angular Momenta
One can add angular momenta. For example one can add the spin angular momenta

of two independent particles, say the spin of the proton and the neutron in a deuteron:

~̂S = ~̂S1 + ~̂S2 (15)

The total angular momentum also has 2 quantum numbers associated with it: S and Sz.
If these are good quantum numbers, then the energy eigenstate ψn satisfies:

Ŝ2ψn = h̄2S(S + 1)ψn (16)

and
Ŝzψn = h̄Szψn (17)

One can also add orbital angular momenta. The rules for angular momentum addition are
the same for all types of angular momentum. But the rules for adding angular momenta
in quantum mechanics are a little tricky. You might think that if one particle has angular
momentum s1 (be it spin or orbital or total) and another independent particle has angular
momentum s2, the total is s = s1 + s2. This is not necessarily so. Classically you don’t
add two vectors by adding their magnitudes: ~s1 + ~s2 6= |s|1 + |s|2. You don’t do this in
quantum mechanics either. In quantum mechanics the rule is that if you add s1 and s2,
the total s obeys

|s1 − s2| ≤ s ≤ s1 + s2 (18)

The z component sz still runs from −s to +s in integer steps; there are 2s+ 1 values of
sz. So if we add the spin angular momentum of 2 spin–1/2 particles, the total spin S of
the system is S = 0 (we call this a singlet) or S = 1 (we call this a triplet). The singlet
state has sz = 0 and the triplet state has 3 possible values of sz: –1, 0, +1. In this way
one can make a composite particle that is a boson out of fermions. For example, 4He is
a boson because if you add the spin of the proton, neutron, and 2 electrons, you always
will get an integer. On the other hand 3He is a fermion.

Many Particle States versus Single Particle States
Before proceeding, I want to clarify the difference between eigenstates of the entire

system and single particle eigenstates. When we summed over microstates r in the past,
we were thinking that each microstate was a many particle eigenstate. However, in
quantum mechanics it is often easier to solve Schrodinger’s equation for a single particle
and ignore many body interactions. Then we approximate a many particle system as a
sum of single particle systems. Thus we often speak in terms of single particle states.

Pauli Exclusion Principle
As we mentioned earlier, fermions are particles which have half–integer spin. Electrons

are an example of fermions. All electrons are the same. They are indistinguishable
particles. If we have a system with many electrons, as in a multielectron atom, the Pauli
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exclusion principle states that there can never be more than one electron in the same
quantum state. In other words, a given set of quantum numbers can only be assigned to
at most one electron. This is true for each type of fermion. For example, there cannot
be more than one proton in a given quantum state.

Consider the quantum mechanical problem of a box with infinitely high walls. We
can label the states with quantum numbers n, spin s and the z–component of spin sz.
Suppose we put 4 electrons in this box. Two electrons, one spin up and the other spin
down, go into the n = 1 state. The quantum numbers of these two electrons is (n = 1,
s = 1/2, sz = 1/2) and (n = 1, s = 1/2, sz = −1/2). The other two electrons go into
the n = 2 state. They have quantum numbers (n = 2, s = 1/2, sz = 1/2) and (n = 2,
s = 1/2, sz = −1/2).

x = 0 x = a

V = infinity

V = 0n=1

n=2

Exchange Symmetry of Bosons and Fermions
The wavefunction of a collection of fermions is antisymmetric under the exchange of

any 2 fermions. For example, if we have 2 fermions with coordinates 1 and 2, and we put
them into 2 states φa and φb, an antisymmetric wavefunction for them is:

ψ(1, 2) = φa(1)φb(2)− φa(2)φb(1) (19)

Notice that if we interchange 1 and 2, we get ψ(2, 1) = −ψ(1, 2). This is what we mean
by antisymmetry. If fermions 1 and 2 were both in the same state, say φa, then we would
get

φa(1)φa(2)− φa(2)φa(1) = 0 (20)

Thus antisymmetry enforces the Pauli exclusion principle. In general a wavefunction
describing a collection of N fermions must be antisymmetric and satisfy

ψ(1, 2, ..., r, ..., s, ..., N) = −ψ(1, 2, ..., s, ..., r, ..., N) (21)

Bosons are symmetric under exchange. For example, if we have 2 bosons with coor-
dinates 1 and 2, and we put them into 2 states φa and φb, a symmetric wavefunction for
them is:

ψ(1, 2) = φa(1)φb(2) + φa(2)φb(1) (22)
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If we interchange 1 and 2, we get ψ(2, 1) = ψ(1, 2). This is what we mean by a symmetric
wavefunction. If bosons 1 and 2 were both in the same state, say φa, then we would get

φa(1)φa(2) + φa(2)φa(1) = 2φa(1)φa(2) 6= 0 (23)

Thus it’s ok to put more than one boson in the same single particle state. In general a
wavefunction describing a collection of N bosons must be symmetric and must satisfy

ψ(1, 2, ..., r, ..., s, ..., N) = +ψ(1, 2, ..., s, ..., r, ..., N) (24)
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