
LECTURE 11

Classical Ideal Monatomic Gas

The ideal gas is composed of noninteracting atoms. A monatomic gas can be consid-
ered to consist of mass points which have linear kinetic energy but no rotational kinetic
energy, no vibrational energy and no internal excitations. Thus the total energy of an N
particle ideal monatomic gas is
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The classical partition function is
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The reason for the prime is that this partition function is slightly defective as we shall
see. The integrals over the ~qi’s gives a factor of V

N . The integrals over momenta factorize
into N separate integrals. So we can write:
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is the partition function for a single molecule. So

lnZ ′ = N ln ζ (5)

It is straightforward to evaluate ζ:
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Recall Reif Appendix A4:
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So we evaluate the integral:
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Hence
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So
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and
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From our previous equations we can calculate the mean pressure p, the mean energy E,
and the specific heat CV .

p =
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∂ lnZ ′

∂V
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V
(12)

or
pV = NkBT (13)

This is the equation of state of the ideal gas. The mean energy is given by

E = − ∂

∂β
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This is what we expect from the equipartition theorem. The heat capacity is given by
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)
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Using N = νNa, where Na is Avogadro’s number and ν is the number of moles, and
R = NakB, we get for the molar specific heat

cV =
3

2
R (17)

This agrees with our previous result.
We can also calculate the entropy S:
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′ + βE] = NkB
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where
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is a constant independent of T , V , and N . This expression for the entropy is wrong!
Gibbs Paradox

To see why (19) is wrong, note that as T → 0, S → −∞ instead of S → 0. This
violates the third law of thermodynamics. But this is not surprising since classical sta-
tistical mechanics breaks down as T → 0. At low temperatures one must use quantum
mechanics. Recall that S = kB ln Ω where Ω is the number of accessible microstates.
As T → 0, the only accessible microstate is the ground state. In addition the spacing
of the microstates becomes larger than the temperature (∆E > kBT ), and we must use
quantum mechanics to address the discrete energy levels. So it’s not surprising that S
doesn’t work at low temperatures.

But there’s another problem with S. Namely the entropy S does not scale with the
size of the system as an extensive parameter should. In other words if V and N double,
then the S and E should double. Consider a box with an internal partition. The total
entropy is S1 + S2. We know this to be true since Z = Z1Z2 if systems 1 and 2 are
completely independent, as they are in this example. Thus

S1 = kB[lnZ1 + βE1]

S2 = kB[lnZ2 + βE2] (21)

and

S = kB[lnZ1Z2 + β(E1 + E2)]

= kB[lnZ1 + βE1] + kB[lnZ2 + βE2]

= S1 + S2 (22)

Now remove the partition. If the gases on the two sides are identical (N1 = N2, V1 = V2,
and E1 = E2 and S1 = S2), then we will observe no physical changes. Nothing happens.
Thus we would expect

S = S1 + S2 = 2S1 (23)

if the two sides are identical.
Now go back to our expression for the entropy of an ideal gas and note that

S(2N, 2V )− 2S(N, V ) = 2NkB

[

ln(2V ) +
3

2
lnT + σ

]

− 2NkB

[

lnV +
3

2
lnT + σ

]

= 2NkB ln 2

6= 0 (24)

The fact that S(2N, 2V )− 2S(N, V ) 6= 0 means something is wrong because the entropy
is not additive. This problem is known as the “Gibbs paradox.”
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If the gases on the two sides were different, then an increase in S when the partition
function is removed seems reasonable since the two gases will diffuse and intermingle. In
other words we expect the configurational entropy to increase. Then putting back the
partition clearly would not restore the total system to its original state. On the other
hand, if the gases are identical, then the restoration of the partition returns the system
to a state physically indistinguishable from the initial state.

So if the gases on the two sides are identical, this increase in S does not make physical
sense. The difficulty is associated with the concept of indistinguishability of the particles.
If we exchange the positions of two identical particles, then we really haven’t changed any
physical properties of the system. Yet we have counted these two identical microstates
as truly distinct in calculating the entropy. (Recall S = kB ln Ω.)

This concept of indistinguishability is clearly well established in quantum mechanics
where this concept is basic to the theory. We have taken the classical picture of atoms
too seriously and have finally exceeded the limits of classical validity.

Gibbs postulated that the classical partition function should be divided by N ! to
correct for counting each indistinguishable microstate. Let

Z =
Z ′

N !
(25)

Then
lnZ = lnZ ′ −N lnN +N (26)

where Stirling’s approximation has been used. The entropy becomes

S = kB[lnZ + βE]

= kBN [lnV +
3

2
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= kBN [ln
V

N
+

3

2
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or
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V

N
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2
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where
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(
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o

)

+
5
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(29)

Now when the system is doubled (N → 2N , V → 2V ), the entropy is doubled. Later
when we repeat the calculation of the entropy of an ideal monatomic gas using quantum
statistics, the factor of N ! will arise naturally. Also the constant ho will be identified as
Planck’s constant.

It is interesting to note that this basic concept of quantum mechanics (indistinguisha-
bility of identical particles) did not arise spontaneously with the development of quantum
mechanics, but was suggested by the ad hoc resolution of a paradox in classical statistical
mechanics. Thus the Gibbs’ paradox joins black body radiation, the photoelectric effect,
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atomic line spectra and all the other pieces of evidence that led theorists to advance
beyond classical mechanics to quantum mechanics.

Validity of the Classical Approximation
We have used a classical approximation to describe an ideal monatomic gas. Under

what conditions would we expect it to be valid? One approach to answer this question
begins with the uncertainty relation:

∆x∆p
>∼ h̄ (30)

We expect ∆x
<∼ R where R is the mean separation of the ideal gas atoms, and ∆p

<∼ p
where p is the mean momentum. Then we would expect that classical mechanics would
adequately describe the dynamics of the gas whenever

Rp ≫ h̄ (31)

This effectively says that h̄ is negligible. Recall that

p =
2πh̄

λ
=

h

λ
(32)

where λ is the mean de Broglie wavelength. Then

Rp ≫ h̄ (33)

becomes

R ≫ h̄

p
=

λ

2π
(34)

Or more simply, the classical description applies when

R ≫ λ (35)

i.e., the mean separation between particles is much greater than their mean de Broglie
wavelength.

To estimate R, imagine each molecule at the center of a little cube of side R, these
cubes filling the available volume V . Then

R
3
N = V (36)

or

R =
(

V

N

)1/3

(37)

The mean momentum p can be estimated using the equipartition theorem

p2

2m
≈ 3

2
kBT (38)
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or
p ≈

√

3mkBT (39)

and

λ ≈ h√
3mkBT

(40)

Hence the condition that the classical description should be valid is

(

V

N

)1/3

≫ h√
3mkBT

(41)

So for large masses and high temperatures we expect classical mechanics to hold.
As an example, air at standard temperature and pressure (STP) has T = 300 K and

mean pressure P = 760 mm of Hg (mercury) = 1.01× 105 Newton/m2. 80% of air is N2.
So the mass of a nitrogen molecule is m = 28mp where mp = 1.67 × 10−27 kilograms is
the mass of a proton. Using kB = 1.38× 10−23 Joules/K, we obtain

N

V
=

p

kBT
= 2.4× 1025 molecules/m3 (42)

or

R =
(

V

N

)1/3

= 35Å (43)

and

λ =
h

p
=

h√
3mkBT

∼= 0.3Å (44)

Thus
R ≫ λ (45)

So the classical description holds for air. However, this is not the case for an electron gas
in a metal at 300 K. In that case we find R ∼= 2 or 3 Å and λ ∼= 60 Å (using the electron
mass). Thus λ ≫ R and we must use a full quantum treatment for an electron gas.

Classical Theory of the Specific Heat of Solids
Consider a monatomic solid as a collection of N independent, identical atoms of mass

m, all of which vibrate harmonically about their equilibrium positions at frequency ω.
The total energy of the solid is

E =
3N
∑

i=1

(

p2i
2m

+
1

2
κiq

2
i

)

=
3N
∑

i=1

(

p2i
2m

+
1

2
κq2i

)

(46)

if all the spring constants κ are equal. By the equipartition theorem

E = (number of quadratic terms in E)× 1

2
kBT

= 3NkBT (47)
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and the molar specific heat becomes simply

cV =
∂E

∂T

∣

∣

∣

∣

∣

V

= 3NAkB = 3R (48)

where NA is Avogadro’s number (NA = 6.02× 1023 molecules/mole) or

cV = 25 Joules/mole−K (49)

Notice that the specific heat is a constant independent of T . This is is called the Dulong–
Petit value of the specific heat. The values of cp for some common substances at room
temperature in units of Joules mole−1 K−1 are (from Reif p. 254):

solid cp solid cp
Cu 24.5 Al 24.4
Ag 25.5 Sn 26.4
Pb 26.4 S 22.4
Zn 25.4 C (diamond) 6.1

Note the obvious discrepancy with carbon (diamond). The classical theory predicts a
temperature independent specific heat while all materials have the general property that
cV is relatively temperature independent at high temperature but goes to zero as T → 0
as required by the third law of thermodynamics. Page 256 of Reif displays actual data
for the specific heat of diamond. From the graph one can see that above about 1000 K,
diamond has a specific heat of approximately 25 Joules/mole–K.

C

T

V
Specific Heat of Solids

3R

Einstein Model of Specific Heat
To get the proper temperature dependence of the specific heat of solids, we must use

quantum mechanics to take into account the discrete energy levels that become apparent
at low energies and low temperatures. One of the simplest ways to do this is provided
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by the Einstein model of specific heat. As a simple model Einstein proposed a collection
of N independent, identical harmonic oscillators but treated the oscillators in quantum
mechanical rather than classical terms. Let the spring constant κi = mω2

i = mω2 =
constant for all atoms in the monatomic solid. Then

E =
3N
∑

i=1

(

p2i
2m

+
1

2
mωq2i

)

(50)

The partition function for N identical independent harmonic oscillators is

Z = ζ3N (51)

where
ζ =

∑

n

e−βǫn (52)

The energy levels of a single one dimensional harmonic oscillator are

ǫn = h̄ω
(

n+
1

2

)

(53)

where n = 0, 1, 2, .... Then

ζ =
∞
∑

n=0

e−βh̄ω(n+1/2) = e−βh̄ω/2
∞
∑

n=0

e−βh̄ωn = e−βh̄ω/2
(

1 + e−βh̄ω + e−2βh̄ω + ...
)

(54)

The sum is just an infinite geometric series where each term is obtained from the preceding
one as a result of multiplication by e−βh̄ω. We can easily sum the series to get

ζ = e−βh̄ω/2 1

1− e−βh̄ω
(55)

or

ln ζ = −1

2
βh̄ω − ln

(

1− e−βh̄ω
)

(56)

and

lnZ = 3N ln ζ = −3

2
Nβh̄ω − 3N ln

(

1− e−βh̄ω
)

(57)

We can now obtain the mean energy:

E = −∂ lnZ

∂β

= −3N
∂

∂β
ln ζ

=
3Nh̄ω

2
+

3Nh̄ωe−βh̄ω

1− e−βh̄ω

= 3Nh̄ω
(

1

2
+

1

eβh̄ω − 1

)

(58)
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and the heat capacity:

CV =
∂E

∂T

∣

∣

∣

∣

∣

V

=
∂E

∂β

∣

∣

∣

∣

∣

V

∂β

∂T

= − 1

kBT 2

(

∂E

∂β

)

V

= −3Nh̄ω

kBT 2

[

− eβh̄ωh̄ω

(eβh̄ω − 1)2

]

= 3NkB

(

h̄ω

kBT

)2
eβh̄ω

(eβh̄ω − 1)2
(59)

It is customary to define a quantity called the Einstein temperature θE by

βh̄ω =
h̄ω

kBT
≡ θE

T
(60)

or

θE ≡ h̄ω

kB
(61)

Then the molar specific heat becomes (with N = NA)

cV = 3NAkB

(

θE
T

)2
eθE/T

(eθE/T − 1)
2

= 3R

(

θE
T

)2
eθE/T

(eθE/T − 1)
2 (62)

In the high temperature limit of T → ∞ or θE/T → 0, we can expand the exponential
in the denominator:

(

eθE/T − 1
)2

→
(

1 +
θE
T

− 1

)2

=

(

θE
T

)2

(63)

and
cV → 3R as T → ∞ (64)

In the low temperature limit where T → 0 or θE/T → ∞

cV → 3R

(

θE
T

)2

e−θE/T as T → 0 (65)

Careful experiments indicate that cV goes as T 3 at low temperatures rather than expo-
nentially. The explanation will come later when we consider the Debye theory of collective
oscillations or normal modes of a crystalline solid consisting of a lattice of atoms.
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