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We derive expressions for the equilibrium entropy and energy changes in the context of the
Jarzynski equality relating nonequilibrium work to equilibrium free energy. The derivation is based
on a stochastic path integral technique that reweights paths at different temperatures. Stochastic
dynamics generated by either a Langevin equation or a Metropolis Monte Carlo scheme are treated.
The approach enables the entropy-energy decomposition from trajectories evolving at a
single-temperature and does not require simulations or measurements at two or more temperatures.
Both finite difference and analytical formulae are derived. Testing is performed on a prototypical
model system and the method is compared with existing thermodynamic integration and
thermodynamic perturbation approaches for entropy-energy decomposition. The new formulae are
also put in the context of more general, dynamics-independent expressions that derive from either
a fluctuation theorem or the Feynman–Kac theorem. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2817332�

I. INTRODUCTION

The ability to calculate separately the enthalpic and en-
tropic contributions to the free energy change of condensed-
matter processes is central to the understanding of their un-
derlying driving forces. For example, the relatively small
free energy of protein folding or of ligand binding often is
the result of a near cancellation of much larger entropy and
enthalpy �or more precisely for canonical ensemble condi-
tions, energy� changes.1,2 In instances involving hydration,
energy-entropy decomposition can help discriminate be-
tween distinct mechanisms for processes with similar free
energy changes.3 Furthermore, comparing experimentally
measured energy and entropy values with those calculated
from molecular simulations can aid in the improvement of
empirical force fields or implicit solvent models used by the
simulations.

Traditionally, most applications of free energy calcula-
tions have been pursued either in the framework of thermo-
dynamic integration4 �TI� or in that of thermodynamic per-
turbation �TP�.5 Recently, a new free energy formulation has
been introduced by Jarzynski;6 it derives from a remarkable
equality between the exponential average of nonequilibrium
work values over an ensemble of trajectories straddling two
states and the equilibrium free energy difference between
those states.

While energy-entropy decompositions of the free energy
change have been derived for both TI �Ref. 7� and TP,8 no
such formalism has been presented for the Jarzynski equality
�JE�. The purpose of the present paper is to provide that.
After briefly reviewing the existing TP and TI-based energy-
entropy decompositions, we derive our new JE formulation,

implement it numerically in two incarnations, and apply it,
together with TI and TP for comparison, to a prototypical
model system.

II. ENERGY-ENTROPY DECOMPOSITION USING TI
AND TP

Consider a system transformation from an initial state 0
to a final state 1, parameterized by an external coupling vari-
able �=0→1 which defines the hybrid potential energy of
the system, V�= �1−��V0+�V1, where the subscripts refer to
the system’s state, with the hybrid system being actually
simulated. The basic thermodynamic relationships

�U = ����F�/�� ,

�1�
T�S = ����F/��� ,

with �= �kBT�−1, are the starting points for all three con-
cerned methods �TI, TP, JE� to compute the energy, U, and
the entropy, S, components of the Helmholtz free energy
change �F=�U−T�S between states 0 and 1.

TI uses an integral expression for the Helmholtz free
energy change, �F=�0

1d���V� /����, �where �. . .�� denotes
canonical-ensemble averaging at fixed ��, together with Eqs.
�1� to obtain the energy and entropy changes �see Ref. 7�
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The TP formalism is based on expressing the free energy
difference between two values of � as an ensemble average
at one � value, �F=F��−F�=−�−1 ln�exp�−��V��−V�����.

This, together with the finite difference, T-derivative form of
Eqs. �1�, leads to the TP version for the energy and entropy
changes �see Ref. 8�
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T�S = T�S�� − S��  kB ln�exp�− ��V�� − V�����,T +
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where L±=1 /kB�T±�T�−1 /kBT and the averages are taken
at T and �. In practice, the total energy and entropy changes
between �=0 and 1 are obtained by summing the �U and �S
values in Eqs. �4� and �5� over a number of adjacent � pairs
covering the interval �0, 1�.

III. DERIVATION FROM THE JARZYNSKI EQUALITY
BY REWEIGHTING

Jarzynski’s free energy method is based on the nonequi-
librium work theorem

�exp�− �W�� = exp�− ��F� , �6�

where W=�0
1��V /���d� is the work performed during

switching from states 0 to 1 on a finite classical system in
contact with a heat reservoir and the brackets denote en-
semble averaging. In its practical implementations, one gen-
erates, from canonically distributed initial conformations, Ns

finite time �hence, nonequilibrium� repetitions of the
�-switching process, records the nonequilibrium work Wi

on the system during the ith trajectory and uses
�F=−�−1ln�1 /Ns�i=1

Ns �exp�−�Wi� to compute the free energy
difference. Adaptation of such a scheme can also lead to
expressions for free energy profiles along specified
coordinates.9 Alternatively, the same strategy can be used in
repetitive single-molecule manipulation experiments by re-
cording work from force-extension measurements.9,10

As in TP �which can be regarded as the instantaneous-
switch equivalent of JE�, our JE-based derivation for
the energy and entropy follows from the temperature
derivatives of the free energy. From Eqs. �1� and �6�, �U
=−� ln�exp�−�W�� /�� and T�S=−�� ��−1 ln�exp�
−�W��� /��, which, expressed as finite differences, yields

�U  −
ln�exp�− �+W���+

− ln�exp�− �−W���−

2��
�7�

and

T�S  − �	 ln�exp�− �+W���+

2���+
−

ln�exp�− �−W���−

2���−
� ,

�8�

where �±=�±�� and the index of the bracket denotes the
inverse temperature of both the initial distribution of points
and the subsequent trajectory bundle. As in TP, the gist is to
run simulations at �, but to calculate, by perturbative re-
weighting, the averages �. . .��±

that one would have gotten if
the simulation would have been run at �+ or �−.

Unlike in TP, however, the �-perturbation formula that
constitutes the centerpiece of the finite difference approxima-
tion is not trivial for JE. Importantly, the perturbation for-
mula used by TP �see Eqs. �4� and �5��, is, in effect, a re-
weighting procedure. One divides, for a given �, each
sample by the weight with which it was generated in the
ensemble run at � and multiplies by the weight
exp�−��V�x�� that the sampled conformation x would have at
��=1 /kB�T±�T�, the desired inverse temperature. This re-
weighting ratio is thus a function of x. In contrast, in JE the
work W�X�t��, that appears in the averages involved in Eqs.
�7� and �8�, is a functional of the trajectory X�t�, rather than
a function of a point x. We thereby need a functional gener-
alization of the weight for the space of trajectories.

In the case of Langevin dynamics this generalization is
offered by the Wiener formalism of stochastic path integrals.
Consider, without loss of generality, the overdamped Lange-
vin equation,

0 = − m�ẋ + F�x� + ��t� , �9�

where m is the mass, x is the position, F�x� is the force
derived from the potential V, and � is white noise with zero
mean and obeying a fluctuation-dissipation relation,
���t���t���=2kBTm���t− t��, with T as the absolute tempera-
ture and � as the friction. For such dynamics, the weight of a
trajectory is given by
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P��X�t�� � exp�− S��X�t��� , �10�

where S��X�t��= �� /4m���0
t �m�ẋ+�V�2dt� is the Onsager–

Machlup action functional11 at inverse temperature �; its
computation in the present work �see Sec. V� involved the
Itô discretization,12 for which the functional Jacobian of the
transformation from noise to conformational coordinates is
constant13 �see also Ref. 14�. Probability functionals akin to
the one in Eq. �10� have previously been used for reweight-
ing ensembles of trajectories generated with a distinct dy-
namical propagator than that of the system of interest.15–19

In the case of trajectories that are propagated by a Monte
Carlo scheme for which suggested steps are accepted or re-
jected based on a Metropolis criterion,20 the weight of each
trajectory is the product of the likelihood of each step in the
trajectory: P��X�t���� jpj, where

pj = �min�1,exp�− ��V�� , if step accepted

1 − exp�− ��V� , otherwise
� �11�

with �V the potential energy change during the suggested
step.

The central quantity needed to recover the correct aver-
age of any functional observable at �± from the actual tra-
jectories at � by applying reweighting is

P�±

P�

� �traj�Xi�t�� , �12�

a correction functional for the relative weight that a particu-
lar trajectory Xi�t� would have at �± if it would pass exactly
through the same x points as those of a trajectory generated
at �. Using it, in the practical application of the JE-based �U
and �S formulae in Eqs. �7� and �8�, all trajectories are gen-
erated at �, then, reweighed at �±. For example, to calculate
�exp�−�±W���±

from an actual evolution of trajectories at �,
one can use the reweighting formula

�exp�− �±W���±
=

�i=1

Ns exp�− �±Wi�	eq�x0i��traj�Xi�t��

�i=1

Ns 	eq�x0i��traj�Xi�t��
,

�13�

where the summation index i labels Ns �nonequilibrium� tra-
jectories simulated at � and originating from canonically dis-
tributed points x0i, and 	eq�x0i� is a correction factor for the
equilibrium weight of the initial point of each trajectory,
	eq�x0i�=exp�−�±V�x0i�� /exp�−�V�x0i��.

Equations �7� and �8� constitute the JE equivalent of the
TP Eqs. �4� and �5�; both sets involve finite differences. In
addition to expressing the necessary � derivatives using a
finite difference approximation, it is possible in the case of
Langevin dynamics to take the required derivative analyti-
cally when starting from an expression for �U into which the
appropriate reweighting factor relative to some other inverse
temperature �� has already been included. The full reweight-
ing factor can thus be expressed as

	eq�x0���X�t�� = exp��� − ���A�X�t��� , �14�

where A�X�t��=V�x0�+ �1 /4m���0
t �m�ẋ+�V�2dt�. The

change in energy as a function of �� can then be expressed in

terms of an ensemble path average taken at �,

�U���� = −
�

���
ln

�exp− ���W − ��� − ��A���

�exp�− ��� − ��A���

. �15�

Since W and A are independent of ��, the derivative
with respect to �� can be taken directly �see the Appendix�,
yielding a general formula for �U as a function of the in-
verse temperature, ��, based on an ensemble average of tra-
jectories sampled at �. This formula is exact in principle for
any value of ��, but will converge poorly for values of �� far
from � when relevant trajectories at the two temperatures do
not overlap. When evaluated at ��=�, the formula simplifies
to

�U =
��W + A�exp�− �W���

�exp�− �W���

− �A��, �16�

a formula for �U at the inverse sampling temperature, �,
that does not rely on a finite difference approximation.

The same procedure applied to the calculation of �S
yields the result

T�S =
��W + A�exp�− �W��

�exp�− �W��
− �A� +

ln�exp�− �W��
�

,

�17�

which recovers the difference between the expression for �U
in Eq. �16� and the JE expression for �F. We note that a
similar procedure as the one used by us for JE, when applied
to TP, can derive the analytical derivative TP expressions for
�U and �S,21 which can be shown22 to be the �T→0 limit
of the finite difference TP formulae. We also note that our
procedure to extract �U−�S, either analytically or as finite
differences, can be applied to �F expressions that use for-
ward and backward switching, derived by Bennett for TP
�Ref. 23� and generalized by Crooks for nonequilibrium.24

Equations �7�, �8�, �16�, and �17� present the finite dif-
ference and, respectively, the analytical derivative JE-
reweighting formulae for calculating equilibrium energy and
entropy components from irreversible �nonequilibrium� work
trajectories performed at a single temperature. They have
been derived using the relationships involving � derivatives
of the free energy given in Eq. �1�.

IV. DERIVATION FROM A FLUCTUATION THEOREM

A nonequilibrium expression for �U that is distinct from
the JE reweighting-based ones derived in the previous sec-
tion follows from a fluctuation theorem �FT�-based relation
derived by Crooks24

�f�x�
��e−�Wd�neq = �f�x�
���eq, �18�

where f�x�
�� is function of the final state of the trajectory.
The left-hand side is an average over nonequilibrium trajec-
tories and the right-hand side is an equilibrium average for
the final state of the system. In the special case when
f�x�
��=V�x� one obtains
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�V�x���=1 = �V�x�t��e−�Wd� =
�V�x�t��e−�W�

�e−�W�
. �19�

Using this expression for the energy of the final state, �U
can be written as

�U =
�V�x�t��e−�W�

�e−�W�
− �V�x�0��� , �20�

with the T�S expression being simply the difference between
the earlier �U and the �F formula in Eq. �6�. We note that
the FT derivation does not require a Langevin or Monte
Carlo propagation in particular, and can be used with deter-
ministic Hamiltonian dynamics �although convergence prob-
lems for deterministic switching free energy calculations
have been reported25,26�.

Equation �19� can also be derived from the Feynman–
Kac theorem27 as follows. Beginning from Eq. �4� in Ref. 9,

e−�V�x,t�

�e−�V�x�,0�dx�
= ���x − xt�e−�W� , �21�

both sides are multiplied by V�x� and integrated with respect
to x, yielding

�V�x�e−�V�x,t�dx

�e−�V�x�,0�dx�
= �V�x,t�e−�W� . �22�

The left-hand side is multiplied the trivial factor
�e−�V�x,t�dx /�e−�V�x,t�dx, the numerator becomes �V�x���=1

and the denominator becomes e��F. Simple algebraic rear-
rangement and substitution using the Jarzynski identity
yields Eq. �19�.

V. TESTS ON MODEL SYSTEM EXAMPLE

To showcase the nonequilibrium JE reweighting-based
and FT-based methods, we present them together with calcu-
lations using TP and TI for a model system introduced by
Sun,28 which has become prototypical for tests of various
methods using the Jarzynski equality.25 The model describes
the system transformation from a bistable ��=0� to a uniwell
��=1� potential,

V��x� = x4 − 16�1 − ��x2, �23�

for which exact �U and �S values could be calculated ana-
lytically from the partition function, thereby allowing us to
estimate both the statistical error and the bias �see Tables II
and III�.

The calculated values of �F, �U, and �S using the JE,
TI, and TP methods are illustrated in Fig. 1 and, as seen,
agree with the respective theoretical values derived analyti-
cally. Moreover, for any of the three quantities, i.e., for �F,
�U, and �S, all three methods �i.e., TI, TP, and JE� yielded
similar accuracies for the same amount of CPU time. A point
regarding the relative precision of the calculation of �U, �S
versus that of �F using our method with the similar relative
precision for TI and TP is worth making here. While the
statistical error in all three quantities decays with 1 /�N,
where N is the number of independent samples, for all three
methods the relative error in �S and �U was an order of
magnitude larger than that in �F. This is in accord with
previous TI and TP entropy and energy calculations which
report, invariably, less accurate estimates than those for the
free energy,29,30 typically by more than an order of magni-
tude. This is because, unlike �F estimates, which require
only the average of a potential difference �or a derivative�, in
either the case of TI or TP, �S and �U estimation depends
on the reliability of computing small differences between
averages of two �or several� relatively larger numbers. In the
case of �F, on the other hand, only a single averaging is
required. As for TI and TP, this also holds true for our JE-

TABLE I. Biases and standard deviations for each of four methods used to calculate �F.

Monte Carlo Langevin

TI TP JE JE

Steps � � � � � � � �

105 0.0205968 0.306957 0.0157416 0.261254 0.0103407 0.294198 0.0250241 3.66951
106 0.0162808 0.0928635 0.000758978 0.0833433 0.000402889 0.087341 0.0741598 1.17113
107 0.0177693 0.0296191 0.000196086 0.0261185 0.000923003 0.0300394 0.0369018 0.356863
108 0.0175085 0.00953593 0.000462176 0.00855994 0.00010989 0.00963731 0.0329407 0.117901

FIG. 1. The calculated �F, �U, and T�S of Sun’s model using Jarzynski’s,
TI, TP, and FT methods compared to the exact theoretical value �dotted
line�. For TI, the � interval �0, 1� was divided into ten subintervals. At each
�, trajectories were run for a number of time steps Nl=105, 106, 107, 108, or
109. The integral in Eqs. �2� and �3� used a trapezoidal numerical summation
scheme. Similarly for TP, simulations were carried out in ten subdivisions of
the � interval. To perform the JE and FT calculations, we run Ns=103, 104,
105, 106, or 107 trajectories with �Nl=1000� steps each. The time step used
in all trajectory was dt=0.01 and the kT used was 65.0 with �T=0.5 for TP
and ��=0.0005 for the finite difference JE.
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derived �U and �S estimates �viz. Eqs. �7�, �8�, �16�, and
�17�� and for our FT estimates �viz. Eq. �20��, which simi-
larly involve differences of averages.

As for TI and TP, for JE it is also because of this dis-
tinction that energy/entropy estimates can be orders of mag-
nitude less accurate than their free energy counterpart.

The results from calculations of �F, �U, and T�S are

presented in Tables I–III. Bias was calculated as �= �x̂̄�N�
−x�, where x is the exact value of �F, �U, or T�S, and x̂̄�N�
is the average calculated from N=1000 trial estimates each
consisting of the specified number of trajectory steps. Since
each estimator is exact in principle, bias is the result of either
insufficient convergence �given the limited number of 1000
trials� or is due to numerical error. The standard deviation is
calculated as the square root of the sample variance �2

= �1 /N��i=1
N �x̂i− x̂̄�N��2 again calculated on the basis of N

=1000 trials. The convergence of bias and standard deviation
are plotted for �U in Figs. 2 and 3.

In this test � has been set to 1 /50; for reference, the
maximum barrier height of the model �i.e., when �=0� is, in
equivalent units, 64. For the simple system presented here,
TP had the best performance. The total steps in each TI simu-
lation were evenly divided between 20 simulations at distinct
values of �, ranging from 0 to 1 and integration over � was
performed using a trapezoidal scheme. TI converged quickly,
but was less accurate that TP due to the low accuracy of the
integral over �.

For the nonequilibrium JE and FT methods, individual
nonequilibrium trajectories were 1000 steps long, both for
Monte Carlo �MC� and Langevin sampling. For the latter
propagation scheme, � was set to 100, and in the case of JE
reweighting, �� was set to 0.0001. JE was competitive as a
method for calculating �F, particularly when MC sampling
was used. JE and FT methods of calculating �U and T�S

were competitive with TI and TP, but fared less well when
Langevin sampling was used. The relatively poor perfor-
mance obtained in this case was a result of a broader distri-
bution of sampled work values, which caused slower conver-
gence, and by additional bias introduced by the numerical
properties of the estimator in Eq. �13� for Langevin propa-
gation �see Fig. 2�.

All methods involving MC sampling produced reason-
able performance, achieving results well within a percent
relative convergence after 108 MC steps �exact values of �F,
�U, and T�S are 65.8878, 53.1957, and −12.6921�. How-
ever, it is important to stress that the relative performance is
expected to be strongly model dependent. Our conclusions
might not be generalized for other systems or conditions or
when comparing to yet other methods �for example, the Ben-
nett acceptance ratio method,23 which is technically distinct
from either TI or TP, has also been recently used31 and
extended32�. It is likely that there might not be an overall best
method, but rather that various methods may be good for
various systems or observables. For example, when compar-
ing the calculation of �F using JE, Bennett’s acceptance-
rejection method, and TI, it was found that each of those
three methods performed more efficiently than the others in
at least one situation examined.33 This is expected to extend
also to the estimation derived here for the components of
�F.

VI. CONCLUDING DISCUSSION

We have presented and tested two nonequilibrium for-
mulations �one based on perturbative temperature reweight-
ing and the other on a fluctuation theorem� that enable the
calculation of the energy and entropy components of the
equilibrium Helmholtz free energy difference between two
states from nonequilibrium transformations, extending thus

TABLE II. Biases and standard deviations for each of six methods �TI, TP, JE reweighting using Langevin or Monte Carlo, and FT using Langevin or Monte
Carlo� employed to calculate �U.

Monte Carlo Langevin

TI TP FT JE FT JE

Steps � � � � � � � � � � � �

105 0.03591 0.35444 0.00821 0.23262 0.12473 5.69595 0.17021 3.64620 0.25044 5.60621 0.01534 75.6854
106 0.03148 0.11162 0.00061 0.07604 0.08878 1.75686 0.03279 1.16295 0.01468 1.78501 1.68585 24.0913
107 0.02908 0.03494 0.00011 0.02343 0.03784 0.56125 0.02647 0.38602 0.00411 0.54892 1.57726 7.24880
108 0.02747 0.01125 0.00048 0.00734 0.00456 0.17885 0.01132 0.11999 0.01117 0.18624 1.89812 2.25615

TABLE III. Biases and standard deviations for each of six methods used to calculate T�S.

Monte Carlo Langevin

TI TP FT JE FT JE

Steps � � � � � � � � � � � �

105 0.01531 0.41363 0.00753 0.18191 0.11439 5.69481 0.18055 3.64778 0.22542 5.73306 0.04036 75.4346
106 0.01520 0.12946 0.00137 0.05698 0.08837 1.75570 0.03239 1.16263 0.08884 1.90158 1.76001 24.0265
107 0.01131 0.04158 0.00009 0.01783 0.03692 0.56169 0.02554 0.38664 0.03279 0.56872 1.61416 7.23693
108 0.00996 0.01316 0.00002 0.00585 0.00445 0.17938 0.01121 0.12025 0.04411 0.18575 1.93106 2.25252

024104-5 Entropy-energy decomposition J. Chem. Phys. 128, 024104 �2008�

Downloaded 15 Jan 2008 to 141.211.38.10. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



the common use of the formalism behind the use Jarzynski
equality or fluctuation theorems for free energies to also treat
entropic and energetic contributions.

While this extension provides a novel method to com-
pute equilibrium �S and �U in nonequilibrium molecular
dynamics or Monte Carlo simulations, it would be of addi-
tional usefulness to employ it in the analysis of single-
molecule experiments. For example, Hummer and Szabo9

have shown how one can utilize the Jarzynski equality in the
context of single-molecule pulling to reconstruct the free en-
ergy profile �F��� along the pulling coordinate � employed
in the experiment; a version of such a JE-based approach has
been used by Liphardt et al.34 to analyze folding free ener-
gies using force-extension curves obtained by unfolding ri-
bonucleic acid �RNA�. The fluctuation theorem also has been
used with single molecule experiments to recover RNA fold-
ing free energy differences.35 Applications of the new JE-
and FT-based energy-entropy methods presented by us here
would provide a new approach to probing the entropy-energy
contribution to the folding free energy landscape36 or to re-
solve between entropic37 and enthalpic38 models for dynamic
disorder in proteins. Moreover, by gauging individual trajec-
tory weights �cf. Eq. �10��, the approach might offer insights
into �U−�S compensation for folding at the single-
molecule level.39

However, although applying the method to molecular

dynamics simulations is straightforward, single-molecule
force-extension experiments do not record all the informa-
tion necessary in order to calculate the statistical reweighting
factor, �traj, in Eq. �12� for each trajectory. This is because
the weight of a trajectory will depend, in principle, on the
displacements and potential gradients for all degrees of free-
dom of the system, while only displacements along the pull-
ing coordinate are recorded. Since the temperature depen-
dence of the free energy is accounted for by the temperature
dependence of the weight, by discarding information about
certain degrees of freedom, their contribution to the tempera-
ture dependence of the free energy is lost. Calculation of the
entropy and energy contributions to the free energy along a
single dimension, while neglecting other degrees of freedom,
provides no more information than can be derived from the
free energy profile analysis of Hummer and Szabo described
earlier.9 But if it were possible to monitor motion along some
important second coordinate,40 the reweighting strategy
could be applied in order to determine the entropy and en-
thalpy due to motion in that second direction as they vary
along the pulling coordinate. It is conceivable that motion
along a second coordinate could be monitored, concomi-
tantly with pulling, by the inclusion of fluorescence reso-
nance energy transfer �FRET� labels in the molecule to be
studied.41,42 Additionally, even assuming that sufficiently re-
solved displacement information could be calculated on the
basis of the FRET signal, some approximation would have to
be made to account for the potential gradient which could
not be directly measured.

Similarly to JE-based �F calculations, only low work
values make significant contributions to the JE-based �S and
�U calculations presented here. These values are statistically
rare, particularly when the spread of the work distribution
exceeds KBT. As such, for switching rates in the linear-
response regime, the efficiency of JE can be similar to that of
TP or TI.25,43 However, the advantage of JE lies in its trivial
parallelization and therefore in a decrease of the actual com-
puting time. Moreover, enhanced path sampling techniques
that favor generation of low work trajectories28,44 could aid
in devising more efficient algorithms when using the present
�U−�S decomposition.

The equations derived here for the Helmholtz free en-
ergy can be generalized to deconvolute the enthalpy and en-
tropy components of the Gibbs free energy in the isobaric-
isothermal ensemble implementations of the Jarzynski
equality.26,45 It would also be interesting to explore how the
JE-derived entropy formulae derived here connect with
entropy-production along single-molecule trajectories39,46,47

or with microcanonical entropies from isoenergetic nonequi-
librium processes.48
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APPENDIX: DERIVATION USING ANALYTICAL
DERIVATIVES

Setting f = �exp�−��W− ���−��A��� and g= �exp�−���
−��A���, Eq. �14� becomes

�U���� = −
�

���
ln�f/g� . �A1�

Taking the derivative with respect to �� yields

�U���� =
1

g

�g

���
−

1

f

� f

���
. �A2�

Because W and A are independent of ��, the derivatives
of f and g can be taken directly

� f

���
= ��− W − A�exp�− ��W − ��� − ��A��� �A3�

and

�g

���
= �− A exp�− ��� − ��A���. �A4�

Hence,

�U���� =
�− A exp�− ��� − ��A���

�exp�− ��� − ��A���

−
��− W − A�exp�− ��W − ��� − ��A���

�exp�− ��W − ��� − ��A���

.

�A5�

This is a general equation for �U as a function of �� in terms
of an ensemble path average at �. Now that we have ex-
ploited the �� dependence of the reweighting factor in order
to take the required derivatives, the function can be evalu-
ated at ��=� yielding the simplified equation

�U��� =
��W + A�exp�− �W���

�exp�− �W���

− �A��. �A6�
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