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ABSTRACT Mechanical forces play a key role in crucial cellular processes involving force-bearing biomolecules, as well as in
novel single-molecule pulling experiments. We present an exact method that enables one to extrapolate, to low (or zero) forces,
entire time-correlation functions and kinetic rate constants from the conformational dynamics either simulated numerically or
measured experimentally at a single, relatively higher, external force. The method has twofold relevance: 1), to extrapolate the
kinetics at physiological force conditions from molecular dynamics trajectories generated at higher forces that accelerate
conformational transitions; and 2), to extrapolate unfolding rates from experimental force-extension single-molecule curves. The
theoretical formalism, based on stochastic path integral weights of Langevin trajectories, is presented for the constant-force,
constant loading rate, and constant-velocity modes of the pulling experiments. For the first relevance, applications are described
for simulating the conformational isomerization of alanine dipeptide; and for the second relevance, the single-molecule pulling of
RNA is considered. The ability to assign a weight to each trace in the single-molecule data also suggests a means to quantitatively
compare unfolding pathways under different conditions.

INTRODUCTION

The effect of mechanical forces on biomolecules is a topic of

forthright interest in several important instances. In single-

molecule experiments, external forces are routinely applied in

vitro to individual protein or nucleic acid molecules by novel

micromanipulation techniques. Using atomic-force micros-

copy, optical or magnetic tweezers, such manipulations can

reveal, one molecule at a time, the dynamics underlying the

kinetics of stretch-induced unfolding (1,2) or ligand unbind-

ing (3). Furthermore, biomolecules often respond in vivo to

mechanical forces as part of their biological function in such

crucial cellular processes as gene regulation, cell adhesion,

protein import, muscle contraction, or signal transduction (4).

There are two outstanding issues that demand a theoretical

treatment to enable the extrapolation of conformational kinetics

observed at higher forces to lower or no forces.

The first issue has to do with the computer simulations of

the underlying processes. Major conformational transitions

typically occur over milliseconds or longer, while the time

range of state-of-the-art molecular dynamics (MD) simula-

tions (5) is limited to microseconds at best. Several techniques

have been developed to speed up the simulations. Targeted

(6), biased (7), or steered (8) MD, while most useful as

computational tools to observe the conformational transi-

tions, often render the underlying kinetics unphysical. This is

because such in silico methods, to compensate for the time

gap, employ external forces that are much higher than the

forces of relevance in vivo or in vitro.

The second issue is experimental in nature. The forces

experienced by most biomolecules, in their physiological con-

texts, are typically low, seldom exceeding a few picoNewtons.

The single-molecule experiments that unfold biomolecules

often involve attaching long molecular handles (typically of

at least a few hundred nm), which makes it difficult to de-

convolute the effect of low forces on the biomolecule from

that on the handle (kBT� 4.1 pN nm at room temperature). As

for the simulations, a rigorous force extrapolation framework

would be an important asset for the experiments, too.

A significant breakthrough aiding in the interpretation of

both simulation and experimental data has been achieved in a

landmark article by Hummer and Szabo (9). They have

utilized the Jarzynski identity (10) in the context of single-

molecule manipulations to reconstruct the free energy profile

along the pulling coordinate. Relatedly, the Jarzynski identity

has also been used by Liphardt et al. (11) to analyze, from an

energetical standpoint, force-extension curves obtained by

unfolding RNA, and by the Schulten group to extract, from

steered MD, free energy profiles for glycerol conduction

through aquaporin (12), and for decaalanine unfolding (13).

Using the original Hummer-Szabo method or subsequent

developments (14–16), kinetic rates for unfolding can be

calculated for the zero-force system under the assumption that

the pulling direction is the reaction coordinate (i.e., the only

coordinate that is much slower than the other degrees of

freedom). However, this assumption may be violated for

complex protein folds. Moreover, even if the pulling direction

is the reaction coordinate when the pulling force is on, it might

not be the reaction coordinate in the absence of the force (17)

(e.g., because of passage through force-induced intermediates

that are absent in thermal/chemical unfolding (18)).

Here, using a different approach, we develop a theoretical

framework that allows simulations performed at a large force

to be post-processed and reweighted such that the correct
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kinetics at the lower values of force (including zero) are recu-

perated. It is important to note that the proposed method

dispenses with the requirement to define a reaction coordinate.

Instead, it needs the less stringent definition of ‘‘reactant’’ and

‘‘product’’ basins (e.g., folded and unfolded states), belong-

ing, from this standpoint, to the general class of transition path

descriptions for the statistical mechanics of trajectories

developed by Chandler and co-workers (19).

The technique we put forth exploits the stochastic proper-

ties of Langevin dynamics, which enable one to statistically

reweight the contribution of each trajectory entering the ex-

pression of a conformational time-correlation function, re-

sulting in the correlation function (and thereby the kinetics)

expected in the presence of a different applied force. The

theoretical design of the method is presented in the next

section, followed by two application sections, concerning the

extrapolation of kinetics from computer simulations and from

experimental single-molecule force-extension curves. We

conclude with a summary discussion.

THEORETICAL DESIGN OF THE METHOD

Treatment of relaxation and kinetics invariably begins with time-correlation

functions (20). When one seeks to calculate a kinetic rate constant for a

conformational transition (e.g., the unfolding of a biomolecule), the time

correlation function of interest can be written in terms of two time products

of Heaviside functions, hF ;U; which are 1 in the folded, F ; and unfolded, U;
macrostates, respectively, and zero otherwise,

CðtÞ[ ÆhF ðx0ÞhUðxtÞæ0

ÆhF ðx0Þæ0

¼
R

Pðxt; tjx0; 0ÞhF ðx0ÞhUðxtÞdrðx0ÞR
hF ðx0Þdrðx0Þ

;

(1)

with Æ�æ0 denoting averaging over the Boltzmann distribution of initial phase-

space points. The second equality in Eq. 1 writes C(t) as an average of the

conditional probability P(xt, tjx0, 0) to be at xt at time t, given that the

trajectory started at x0 at time t ¼ 0, over an ensemble of phase-space

trajectories, x(t), that are initiated with the proper measure dr(x0) (21). When

a defined distinction between the states exists (i.e., transitions between F
and U are rare when compared to molecular motions), C(t) reaches its

equilibrium value, the concentration ÆhUæ of unfolded species, in an ex-

ponential fashion, CðtÞ � ÆhUæð1� exp½�ðkF/U 1 kU/F Þt�Þ; with a decay

constant that is the sum of the forward and backward reaction rate constants.

For times smaller than the equilibration time of the system, but greater than

the time required for transient behavior to relax, C(t) is a linear function and

its time-derivative (i.e., its slope) corresponds to the forward rate constant

kF/U (19,22).

We can formally interpret an external force f on the system as a

modification of its underlying potential energy, i.e., a transformation V /
V9¼ V� fx. Barring cases when V9 is not conservative, one could extrapolate

the thermodynamics of the system with potential V from a simulation done on

V9 by importance sampling techniques (23). This can be done by employing a

multiplicative reweighting factor in each term of the ensemble averaging sum,

in effect dividing by the equilibrium weight each sampled conformation x had

on V9, and multiplying by what its weight would have been on V. However, to

extrapolate the kinetics on V from dynamics simulated on V9 is nontrivial

(19,24–27). Directly applying the above-described reweighting will not be

sufficient for the calculation of time-dependent averages such as C(t) in

Eq. 1 because the entire phase-space trajectory that goes from x(0) to x(t)
would be different on the modified potential. For a kinetic extrapolation to

work, one has to generalize the weights of single conformational points x to

weights of entire trajectories x(t), i.e., to find the functional equivalent of the

weight function. Such a functional weight for trajectories can be found in the

case of Langevin dynamics, assumed sufficient for the observed conforma-

tional dynamics, mẍ ¼ �gm _x � =VðxÞ1 f ðtÞ1 jðtÞ;where m is the mass, g

the coefficient of friction,�=V(x) the force arising due to the potential, j(t) a

force due to random collision, and f the externally applied force (which may

have an explicit time dependence). Assuming stochastic dynamics, the

conditional probability P(xt, tjx0, 0) in Eq. 1 can be obtained from knowledge

of the joint probability W(j(t)) of a particular time series of random ‘‘kicks’’

j(t) that conspires to lead to xt at time t, and from subsequent functional

integration over all possible realizations of j(t):

Pðxt; tjx0; 0Þ ¼
Z

DjW½j�dðxðtÞ � xtÞ: (2)

For Langevin dynamics, when j(t) is white noise with zero mean and

obeying a fluctuation-dissipation relation, Æj(t)j(t9)æ¼ 2 kBTmgd(t – t9), this

probability follows from the Gaussian nature of j,

W½jðtÞ� ¼ exp � 1

2w

Z t

0

jðt9Þ2dt9

� �
; (3)

where w ¼ 2 kBTmg. As such, the conditional probability can also be

written, using the Wiener formalism of path integrals (28) as

Pðxt; tjx0; 0Þ ¼
Z ðxt ;tÞ

ðx0 ;0Þ
DxjJ½x�jexp �Sf ½xðtÞ�

2w

� �
; (4)

where Sf ½xðtÞ� ¼
R t

0
ðmẍ1mg _x1=V � f ðtÞÞ2dt is a force-dependent gener-

alization of what is often called the Onsager-Machlup action (29,30); see

also (31)). The functional integration in Eq. 4 is performed over all possible

paths connecting the initial and final points, and contains the key quantity

we seek, i.e., the functional weight of each trajectory, under external force

conditions f(t),

Wf ½xðtÞ�[ exp �Sf ½xðtÞ�
2w

� �
: (5)

The functional Jacobian jJ(x)j arises from the j to x coordinate transformation.

Using, as done here, a time-slicing discretization of the trajectory

corresponding to the Ito formalism for stochastic calculus (32), the Jacobian

is unity (28) (see also (33)). An appropriate Langevin finite-difference

algorithm to advance positions and velocities that meets this criterion is given

by the straightforward scheme of Ermak (34), which is based on the as-

sumption that the force remains essentially constant during the time step

discretization; we have used its implementation as described in Allen and

Tildesley ((35); see Eq. 9.19 therein). An overdamped limit case of the

algorithm can also be used, and is described in Extrapolation of Experiments:

Single Molecule Pulling of RNA below.

The correction functional for the relative weight of a hypothetical

trajectory x(0/t) generated under force condition f(t) that would have

passed through exactly the same configurations as those corresponding to

the actual trajectory x9(0/t) generated under f9(t) (i.e., x(t) [ x9(t) for all

times from 0 to t) is

Wf ½xðtÞ�
Wf9½xðtÞ�

¼ exp �Sf ½xðtÞ� � Sf9½xðtÞ�
2w

� �
: (6)

Using the correction functional in Eq. 6, time-correlation functions such

those in Eq. 1, for systems under applied force f, can be expressed from

trajectories generated under a distinct force f 9, without approximation, as
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ÆhF ðx0ÞhUðxtÞæ0 ¼R
Dx9hF ðx90ÞhUðx9

t
ÞWf ½x9�=Wf9½x9�ebðV9ðx0Þ�Vðx0ÞÞR

Dx9Wf ½x9�=Wf9½x9�ebðV9ðx0Þ�Vðx0ÞÞ ; (7)

where V9(x0) ¼ V(x0) – f(0)x0 and the corresponding Boltzmann factors are

corrections for the different initial distributions. Equation 7 is the central

formula of this method; the prime notation emphasizes that the averaging

summations are over trajectories generated under applied force f 9. As such,

kinetics under a particular force condition f 9, either simulated or measured in

single-molecule experiments (provided the action functional is accessible),

may be rigorously extrapolated to yield the exact kinetics under a range of

other (usually lower) forces f.

In practical implementations, the integral over paths in Eq. 7 is calculated

as a sum over all the discrete trajectories generated by the finite difference

solution to the Langevin equation. Accordingly, the action is calculated

using the corresponding finite difference algorithm,

Sf ½xðtÞ� � +
i

m
Dvi

Dt
1 mg

Dxi

Dt
1 =Vi � fi

� �2

Dt; (8)

where Dvi and Dxi are the changes in velocity and position during the ith time

step, and �=Vi and fi are the systematic and applied forces evaluated at the

beginning of the step.

Because, given the stochastic force term in the Langevin equation, any

trajectory is possible on either potential surface (i.e., with and without the

applied force), the method is exact even when the location of product and

reactant basins and transition states move significantly as the force is applied.

The dividing surface used in the calculation of Eq. 1 should be defined to

match the conditions under which the kinetics is desired. Given sufficient

sampling, the relatively fewer trajectories exhibiting typical low force

behavior will be weighted heavily and will dominate the average. In practice,

the method is limited by finite trajectory sampling as the perturbation to the

potential energy surface becomes large.

For each of the two possible applications, i.e., for both simulations and

experiment, we present results pertaining to biomolecular unfolding in the

following two sections. In this section, we continue with the derivation of the

form of the correction functional for two typically encountered force

conditions: the constant force and the constant loading rate modes of pulling.

The fourth section contains a third derivation for the particular case of a time-

dependent harmonic pulling potential and overdamped Langevin dynamics.

Here, to exemplify, we start with a pedagogical test case of a particle in a one-

dimensional potential, V(x)¼ x2(x – 2)2, providing minima at x¼ 0 and x¼ 2,

joined by a barrier of height 1 at x¼ 1. A constant applied force modifies the

potential as shown in Fig. 1 a. Rate constants for traversal of the barrier from

left to right are calculated from the slope of the linear regime of the time-

correlation function in Eq. 1 under a variety of applied force conditions.

The first representative case considered for the form of f(t) is that of a

constant applied force. In this case, the results of a simulation run at one

force are reweighted to yield correlation functions at an array of other forces,

including zero force. For trajectories propagated under a constant applied

force, ft, the desired correction functional allowing the calculation of the

correlation function for some other applied force f, using Eq. 6, is

Wf ½x�
Wft
½x� ¼ exp

ðf � ftÞ
w

�ft 1 f

2

Z
dt 1 m

Z
d

�
dx

dt

���

1 mg

Z
dx 1

Z
dV

dx
dt

��
: (9)

Using Eq. 9, and the fact that V(x0) – V9(x0) ¼ (f – fs)x0, the correlation

function in Eq. 7 can be expressed as a function of a constant applied force, f,

where fs is the force at which initial states have been sampled, and ft is the

force at which the trajectories have been run.

Trajectories were run by integrating the Langevin equation with b ¼ 4,

g ¼ 10, m ¼ 1, and f values of 0.0, 0.1, 0.2, 0.3, and 0.4 (in arbitrary units).

One million trajectories were run at each value of f. Initial positions for each

trajectory were sampled from the paths of single long time trajectories run

under appropriate force conditions. All trajectories originate from the left

side of the barrier (the potential well near x ¼ 0). To serve as references,

correlation functions (Eq. 1) were calculated directly on the basis of the

simulations at each force value. The correlation functions for each value of f

were then recalculated using a single simulation in which the initial states are

sampled at f ¼ 0.0 and trajectories are propagated at f ¼ 1.0, by reweighting

the results according to Eq. 7. A comparison of the correlation functions is

shown in Fig. 1 b. The correlation functions obtained by reweighting the

results of the high force simulation are in exact agreement with the direct

simulations performed at the lower forces. Rate constants calculated from

the reweighted correlation functions also agree exactly with those obtained

from the directly-calculated correlation functions (Fig. 1 c).

FIGURE 1 (a) Constant applied force, f, lowers barrier

to forward transition for bistable oscillator (see text); f¼ 0,

0.4, 1.0 shown in red, orange, and black, respectively. (b)

Correlation functions for bistable oscillator at various

applied forces, f ¼ 0.0, 0.1, 0.2, 0.3, 0.4 and 1.0 in red,

green, blue, violet, orange and black. Solid lines: data from

simulations at the actual applied force. Dashed lines

(overlapping exactly onto solid lines) are data obtained by

reweighting of trajectories run at f¼ 1.0. (c) Rate constants

for bistable oscillator at various applied forces. Values

based on non-reweighted data are plotted in black. Values

based on reweighted data are plotted in red. (d) Correlation

function for the bistable oscillator at zero applied force

calculated from simulations run with a time dependent

applied force. Solid lines are plots of the correlation

function based on raw simulated data. Dashed lines have

been reweighted to provide the correlation function in the

absence of an applied force. The black line is the result

of simulations without any applied force. The red lines are

the result of simulations with an applied force f(t) ¼ 0.01t.
The green lines are the result of simulations with an

applied force f(t) ¼ 0.1t.
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The second case considered is that of a linear time dependence, f(t) ¼ rt,

corresponding to the experimental realization of a constant force-loading

rate, r. In this case, no Boltzmann correction is needed for the initial

positions, as they are always sampled at zero external force (see Eq. 6). The

correction functional to calculate the zero-force kinetics from constant force

loading becomes

W½x�
Wf ½x�

¼ exp
rb

2g

Z
td

dx

dt

� �
� rb

2

Z
tdx � rb

2mg

Z
t
dV

dx
dt

� �
:

(10)

Trajectories were run with the same parameters previously used for b, g, and

m. One million trajectories were run at each of the following three force

conditions: f ¼ 0, f¼ 0.01t, and f¼ 0.1t. In Fig. 1 d, the correlation function

calculated directly from Eq. 1 in the absence of the force is compared with

the reweighted correlation functions calculated using the correction

functional Eq. 10 in Eq. 7 at r ¼ 0.01 and 0.1. The correlation function

for r ¼ 0.01 is nearly exact, but for r ¼ 0.1 significant deviations appear at

longer times. Although the formalism is exact, these deviations occur due to

insufficient sampling, at large loading rates, of trajectories that would be

probable in the absence of the applied force. The deviations reflect the

trajectory-space equivalent of the problem of distribution overlap in

conformational space when calculating, say, the equilibrium free energy

change between two states (23). While a drawback in itself when one wishes

to extrapolate between widely different force conditions, the lack of overlap

in the trajectory distributions at the two forces can be used, on the other

hand, as a gauge for how representative are the trajectories at the higher force

for the ensemble of single-molecule trajectories at the lower (or zero) force.

EXTRAPOLATION OF SIMULATIONS:
CONSTANT-FORCE PEPTIDE UNFOLDING

Alanine dipeptide is perhaps the simplest model exhibiting

properties relevant to the general problem of studying protein

conformational changes (36,37). As such, it was used here as

a system of biological relevance and sufficient complexity to

allow for a more stringent test of reweighted force-induced

kinetics, while remaining computationally undemanding so

that, for comparison, zero-force kinetics can be calculated

directly.

Simulations were done with CHARMM (38), using

parameter set 19 and the ACE implicit solvation model

(39). This model provides well-defined minima for the C7eq

and ar conformations. The transitions between them, involv-

ing rotation about the dihedral angle c, serve to represent the

F/U conformational kinetics under study. Fig. 2 a shows a

simplified Ramachandran plot for the system indicating

the two basins. The c-values of the transition structures in the

absence of an applied force are taken as cutoffs defining the

initialF and finalU basins:U is defined by – 117.568� , c ,

39.034�, and F by the values of c completing a full circle.

To effect the C7eq to ar transition, a constant pulling force

was applied to the C-terminal methyl group (see inset in Fig.

2 a). To constrain rotational and translational motions of the

molecule when the force is applied, the positions of the three

heavy atoms composing the N-terminal acetyl group were

fixed. The force direction was defined by the difference

between the equilibrium position vectors of the methyl group

in the C7eq and ar conformations when the fixed atoms of the

FIGURE 2 (a) A single adiabatic potential energy contour in f–c space is

plotted indicating the location of C7eq and ar minima, and the transition

structure joining them, at both zero (black) and 100 pN (red) applied forces.

The boxes indicate the definitions of the product and reactant regions used in

calculating the correlation function (Eq. 1). Equilibrium geometries for each

of the minima are depicted on the right, and the green arrow indicates the

direction of the applied force. (b) Correlation functions for the conforma-

tional transition of alanine dipeptide at various applied forces. Solid lines

(black, red, green) are from simulations at the actual applied force (0, 40,

100 pN, respectively; see Eq. 1). Dashed lines (black, blue, red, orange,

violet, and green) are obtained by reweighting the trajectories of a simulation

at 100 pN, using initial states sampled at zero force, for extrapolation to

forces of 0, 20, 40, 60, 80, and 100 pN, respectively (Eq. 7). (c) Rate

constants for conformational transitions of alanine dipeptide at various

applied forces. Values based on actual simulations at 0, 40, and 100 pN

applied forces are plotted in black. Values plotted in red are determined by

reweighting the results of a single set of simulations carried out at 100 pN

from initial states generated in the absence of an applied force.
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acetyl group are overlaid. We showcase how, using a simu-

lation with a high force (that effects the transition on a rapid

timescale), we can extrapolate rigorously the kinetics at any of

the lower values of the force (which can also be calculated

directly in this model because of its simplicity).

To now apply our method to this system, one thousand 50-

ps long trajectories were run for each of three applied forces

(0, 40, and 100 pN). Langevin dynamics were used, with a

temperature of 300 K, and friction coefficient of 91 ps�1 for

all atoms. Initial positions for the trajectories were sampled,

after discarding an initial equilibration period of 500 ps, by

saving geometries every picosecond provided they fell

within the initial basin. Correlations calculated from these

simulations are depicted as solid lines in Fig. 2 b.

In addition, 5000 trajectories were run with an applied force

of 100 pN, using initial states sampled at 0 pN. These

trajectories were reweighted to recover the correlation func-

tion at an array of lower forces, from 0–80 pN. The reweighted

correlations functions are shown as dashed lines in Fig. 2 b,

showing agreement with the directly calculated correlation

functions, and permitting us to plot the force dependence of

the rate constant in Fig. 2 c.

This application to alanine dipeptide has showed that this

method can be used to extrapolate kinetics over a wide range

of forces, lower than the force at which the simulation has

been performed, including zero. While the application per-

tained to a small portion of a protein backbone, the formalism

should be generally applicable to simulations of larger bio-

molecules using massively (but trivially) parallel computing.

EXTRAPOLATION OF EXPERIMENTS: SINGLE
MOLECULE PULLING OF RNA

We now describe the application of the trajectory reweighting

strategy to the force-extension curves typically reported in

single molecule pulling experiments (see Fig. 3 a). The

statistical weight of each pulling trajectory is to be calculated

from each measured force-extension trace data and adjusted to

provide a time correlation under some different condition.

Ideally, such a technique could be applied to recover any time-

dependent biomolecular property at in vivo conditions from

pulling experiment data. However, the calculation of a

statistical weight from force-extension traces is complicated

by the time resolution of experimental data, and by the

inability to measure the total microscopic force on the system.

Here we begin by undertaking a less ambitious calculation:

the recovery, from force-extension curves for RNA unfold-

ing, of a time-correlation function for low pulling velocity on

the basis of a experiments carried out at high pulling velocity.

Because the extrapolation is to a condition with a time-

dependent Hamiltonian, the calculation of the correlation

function, Eq. 1, will not provide a rate constant, but will

merely serve to demonstrate how the method can be applied

experimentally to recover correlation functions under condi-

tions other than those of the experiment.

Consider a trajectory propagated by overdamped Lange-

vin dynamics, shown to be appropriate for characteristic

timescales longer than ps (40), and for which the displace-

ment is written in discretized form involving the sum of

systematic and random displacements,

Dxj ¼
Dt

mg
Fj 1 Dx

R

j ; (11)

where Fj ¼ – =Vj 1 fj(t) includes the external force f applied

in the experiment. As the force is evaluated at the beginning

of each discrete interval, this constitutes an Ito-discretized

integration algorithm for the stochastic differential equation.

The probability wðDxR
j Þ of observing DxR

j for a particular

time step j has a Gaussian form, and the probability

functional W(x) of experimentally observing a particular

trajectory, x(t), is simply the joint probability of occurrence

of the series of random displacements, DxR
i ; necessary to

produce that trajectory,

FIGURE 3 (a) Force-extension curves for the P5abc RNA unfolding

experiments produced from the simulated data using Langevin dynamics on

the potential energy surface described by Eq. 14. (b) The correlation function

calculated directly from single molecule pulling data using Eq. 1 (continuous

red line for v ¼ 530 nm/s, continuous green line for v ¼ 360 nm/s), by

reweighting the high-speed data to the low speed conditions using Eqs. 7 and

13 (dashed red line), and under the t9 ¼ at scaling (dotted red line).

Borderline between F and U states at 50 nm extension.
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wðDx
R

j Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
bmg

4pDt

r
exp �bmg

4Dt
ðDx

R

j Þ
2

� �
;

W½x� ¼
Yn

j¼1

wðDx
R

j Þ: (12)

This is a general equation for the relative weight of an

overdamped Langevin trajectory generated with a discrete

time step, Dt. We wish to apply the resulting correction

functional, i.e., the ratio W9/W of the above weight, to

extrapolate the kinetics from single molecule pulling exper-

iments in which a biomolecule is stretched by a harmonic

pulling spring (an AFM cantilever) moving at a constant

velocity. As an initial effort, we will calculate a correlation

function expected at a low pulling velocity, from force-

extension traces measured at a high pulling velocity. In this

case the position variable, x, corresponds to the extension

along the pulling coordinate, and the change in sampling

conditions corresponds to change in the time-dependent

component of the force experienced during the trajectory.

Given the effective force Fj ¼ F0j – ks(x – vjDt) under which

the experiment is conducted, where F0¼ – =V is the force due

to the time-independent molecular potential, we seek the

correlation function under the conditions Fj ¼ F0j – ks(x –

v9jDt), where v9¼ v/a is a new (lower) pulling velocity (a .

1). However, for widely distinct pulling velocities, encoun-

tered in the experiments, these two sets of conditions give rise

to ensembles of trajectories with very poor overlap, resulting

in numerical difficulties. In particular, for the problem of

single molecule pulling experiments, it is likely that for any

reasonable number of samples, all trajectories occurring at a

particular low pulling velocity will remain folded while

trajectories at high velocity are unfolding, and all trajectories

at high velocity will be completely unfolded while trajectories

at low velocity are unfolding. This situation makes the

calculation of certain correlation functions by reweighting

impossible.
This difficulty can be surmounted by scaling the time step,

Dt, between observed extensions, x, by a factor of a so that

Dt9 ¼ aDt. We no longer consider the relative probability of

the same trajectory occurring on two time-dependent poten-

tials. Instead, we calculate the relative probability that two

distinct trajectories will occur on two distinct time-dependent

potentials, where the new trajectory passes through the same

extensions as the original, but at time intervals that are longer

by a factor of a. Setting v9 ¼ v/a and Dt9 ¼ aDt results in

W½x9�
W½x� ¼ a

�n
2 exp +

n

j¼1

bmg

4Dt
1� 1

a

� �
Dx

2

j 1
bDt

4mg
ð1� aÞF2

j

� �
;

(13)

where Dxj is the change in extension for the jth step of the

trajectory, Fj is the force exerted by the potential that

contributes to the jth step, and Dt is the time resolution of the

original trajectory data. Note that Fj is the same under both

conditions due to cancellation between the scaling of time

and pulling velocity. In this way, the portion of the correlation

function occurring during the unfolding of trajectories at low

pulling velocities is reconstructed from the high velocity pull-

ing data collected during the period of time when high pull-

ing velocity trajectories are unfolding.

Force versus extension curves for the single molecule RNA

unfolding experiments of Liphardt et al. (41) were generated

following the method used by Hummer and Szabo (42).

Overdamped Langevin motion is simulated on a potential

energy surface consisting of the lower in energy of two har-

monic potentials, and an additional time-dependent harmonic

potential:

VðxÞ ¼ min
k0

2
x2
;
k0

2
ðx � DxÞ2 1 DGu

� �
1 ksðx � vtÞ2:

(14)

The first two potential wells are due to the stretching of the

linkers that anchor the RNA to beads, and k0 ¼ 0.22 pN/nm

corresponds to the spring constant for the linkers. The first

potential corresponds to the folded state of the RNA. The

second corresponds to the unfolded state, and is shifted by

change in extension due to unfolding, Dx ¼ 15 nm, and the

free energy of unfolding, DGu ¼ 34 kBT. The two potentials

cross at ;50 nm extension, where the unfolding transition

occurs. This serves as the dividing surface between products

and reactants. The pulling force is represented by the time-

dependent potential well with a force constant ks ¼ 0.1 pN/

nm. The pulling potential is moved at a constant velocity, v,

to exert an increasing unfolding force by controlling the total

extension (handle, molecule, bead), which corresponds to

what is called the mixed ensemble (43,44). The parameters

used are those in Hummer and Szabo (42) to correspond to

the unfolding measurements on a P5abc RNA molecule in

Liphardt et al. (41). Fig. 3 a shows the overlaid force versus

extension curves for 20 simulations at each of two pulling

velocities (360 nm/s and 530 nm/s). Force and extension are

reported every millisecond, consistent with the time resolu-

tion reported by Liphardt et al. (41). As in the experimental

reports, the raw data is smoothed by convolution with a

window function (5 ms in width). The model used in this

section is very schematic, collapsing the multidimensional

potential energy surface of biomolecular unfolding onto a

single pulling coordinate (although more refined path-

integral models using native-contact coordinates for folding

exist (45)). The model in Eq. 14 was chosen because it has

appeared previously in the literature to describe biomolec-

ular unfolding in single molecule pulling experiments, and

appears to provide relatively realistic force-extension curves.

Moreover, because we are extrapolating to a condition

involving a time-dependent Hamiltonian, C(t) is no longer

related to a rate constant, but is simply the time-correlation

function describing the appearance of product from reactant

that one would observe for the low pulling rate. The idea was

simply to demonstrate the possibility, and difficulties inherent,
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in applying our method (i.e., Eq. 7 with the associated re-

weighting formulae, Eqs. 9, 10, or 13) to real single molecule

experiments that measure force and extension time-series

under constant-force, constant loading rate, or, respectively,

constant-velocity modes of operation of the corresponding

experimental apparatus.

On the basis of extension data from 2500 simulated

experiments performed at each pulling rate, the time

correlation function in Eq. 1 is calculated directly. The

force-extension traces generated at the high pulling rate are

then reweighted by applying the correction functional in Eq.

13, to obtain results pertinent to an experiment performed at

the low pulling rate, according to Eq. 7. As seen Fig. 3 b, the

reweighted curve is able to reproduce the result from direct

slow-pulling data. As for the simulations in the previous

section, the reweighting here is made possible by mapping

each trace sampled at the high pulling rate into a new trace

that passes through the same extension points, but under the

influence of a pulling rate, v9¼ v/a, that is slower by a factor

of a, and at time intervals, Dt9 ¼ aDt, that are greater by a

factor of a.

The values Fj¼ – =Vj 1 fj(t) from Eq. 13 are not available

experimentally (because the force on the molecule-linker

system,�=V, cannot be directly measured). However, for the

pulling velocities used, the contracting force on the linkers, is

on average matched almost evenly by the pulling force of the

cantilever spring, resulting in values for Fj reasonably

approximated as zero. The correlation function calculated

using accurate Fj values for reweighting (known to us from

the simulation but hidden in real experiments) is very similar

to the one shown in Fig. 3 b, which was calculated by ap-

proximating the resultant forces as equal to zero.

The use of timescaling in addition to force reweighting

yields good results for the tested example. Rather than simply

reweighting the contribution of a trajectory to the ensemble

average with the probability that it would instead occur at a

lower pulling velocity, each trajectory is mapped onto a new

trajectory that passes through the same extensions as the

original, but at longer time intervals (i.e., time is dilated). This

demonstrates the possibility to calculate time correlation

results for timescales longer than those of the experiment (or

simulation) upon which they are based. As applied to the

reweighting of single molecule pulling experiments from high

to low pulling rate conditions, this time dilation will also

significantly enhance the probability overlap between exper-

imental and target trajectories. This is because the behavior of

high pulling velocity trajectories at short times is similar to the

behavior of low pulling velocity trajectories at long times, and

allows for improved convergence of the reweighted correla-

tion function. In fact, for the studied system, good results for

the correlation function at slower pulling rates can be

accurately recovered simply by scaling the time coordinates

of the high pulling velocity correlation function by a factor of

a, i.e., by performing the transformation t9¼ at, without any

statistical reweighting (see Fig. 3 b). This is due to the fact that

trajectories closely follow the minima created by the interac-

tion of the pulling potential and the time-independent

potential of the system. Unfolding occurs when this minima

crosses the extension at which the unfolded RNA becomes

more stable than the folded RNA. Statistical reweighting is

limited by sample size, overlap between probable trajectories

under the two conditions, and, in the case of time-step

reweighting, by the ability of Langevin dynamics to produce

a correct distribution of trajectories for the larger time step.

In addition to providing a formalism for calculating time

correlations functions for conditions other than those of the

experiment, this analysis provides the statistical weight of

each observed trajectory. This information could be a useful

bias for computational studies of the system which try to

reproduce in atomic detail trajectories conforming to those

found from experimental data to be the most probable.

CONCLUDING DISCUSSION

We have presented a method that relies on the calculation of

conditional probabilities for systems undergoing Langevin

dynamics as a function of an applied force. From a single set

of simulated trajectories, recorded at a high force, a family of

exact correlation functions can then be reconstructed for an

entire range of lower forces of interest (including zero force).

The context in which the method is useful requires some

overlap to exist between trajectories occurring within the

range of force conditions. Useful application to the simulation

of biomacromolecules will require a balance to be found

between the acceleration of rare event sampling, and the

preservation of trajectory overlap. In principle, the method is

also applicable in experimental context, and could be useful to

analyze and extrapolate, to a wide range of force conditions,

the kinetics measured using single molecule pulling exper-

iments in which biomolecules are pulled from a native state

into a denatured state by the application of an external force. A

successful application to such experiments would be partic-

ularly useful because the option of performing the experiment

in the absence of force does not exist. When a Heaviside-

Heaviside time correlation function is used, the kinetic rate

constants can be calculated as a function of force.

Reweighting formulae were derived and applied for three

force conditions. The first two corresponded to constant ap-

plied force, and constant loading rate. The third corresponded

to the case of constant velocity pulling, and required in ad-

dition the development of a time dilation scheme to improve

the overlap between trajectories relevant under different

velocities.

Our approach is not restricted, however, to these three

force conditions. Any form of (time- or spatial-dependent)

external force can be incorporated in general. For example,

one can also derive the formalism for reweighting upon ap-

plication of biasing forces (7) or holonomic constraints (6).

While exact in theory for any value of the force, in

numerical applications the method will be accurate only if
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the trajectories generated at high-force visit the conforma-

tional pathways populated by trajectories evolving for the

low-force regime. This need of trajectory overlap is the

functional analogy of the need for overlap of conformational

distributions required by free energy perturbation methods.

On the other hand, the ability to assess the weight of each

trace in the single-molecule data (and the weight overlap W9/

W in Eq. 13) is likely to aid a quantitative comparison of the

unfolding pathways under different conditions (46). For

instance, despite the fact that temperature- or denaturant-

induced unfolding at zero force leads to collapsed structures,

whereas forced unfolding results in an extended chain, an

extrapolation to zero force of atomic force microscopy

experiments for a b-sandwich protein found an unfolding

rate comparable to that for chemical denaturation (47). This is

similar to what has been found recently, both in DNA

unzipping (48) and ligand-unbinding (49) experiments which

reported that the detachment force depends linearly on the

logarithm of the loading rate and that by an extrapolation to

zero force the off-rate in solution can be determined.

Using the reweighting approach presented, if a conforma-

tional property of an intermediate along a slow (un)folding

route is known, one can also calculate the force dependence

of kinetic partitioning coefficients, which are useful means to

address the relative count of fast and slow folding trajectories

for both proteins and RNA (50).

The probabilistic weight of each recorded unfolding curve

that the method can calculate is also useful in comparing

quantitatively the pathways between experiment and simula-

tion. The ability to calculate weights leads to the possibility to

single-out, from the multitude of single-molecule traces, those

kinds of traces (or trajectories) that have significant impor-

tance. In addition to yielding physical insight into the nature

of that particular realization of the trajectory, this knowledge

can lead to novel strategies to generate transition paths that

will have a desired weight or weight overlap. For example, in

the Jarzynski identity, which has been used both in simulation

and experiment, only low-work trajectories count signifi-

cantly. Finding correlations between the statistical weight

functional W and the work distribution (work being roughly

the area under the force-extension curves) can lead to insight

into ways of generating low work trajectories in simulations

and perhaps also in experiments.

While we delimitated our approach from that of Hummer

and Szabo by not requiring a transition coordinate, if a such a

coordinate is known and one wishes to compute a free energy

profile along it, a combination of that method with this one

is feasible. One can use the Hummer-Szabo approach to

extrapolate the free energy profile at other forces by running

simulations in which one accumulates a statistical weight for

each trajectory as well as the work, and then reweights the

works in the average involved in the Jarzinski identity.

Furthermore, while extrapolation to loading rates other than

zero can be done by generalization of the Hummer-Szabo

approach, that formalism, as currently presented, does not

provide for it; such a generalization is possible within this

formalism by combining the Jarzynski-based reconstruction

techniques with action-functional rescaling.

We have showcased only Heaviside correlation functions,

but the proposed method can also be applied to the calculation

of any equilibrium time-correlation function. This is impor-

tant, for instance, in relating to biomolecular NMR measure-

ments (51) for cases when one wishes to understand

conformational relaxation with contributions from macro-

states separated by barriers so large that driving forces would

be required in simulations to effect the conformational ex-

change.
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