
Chemical transport modeling of potential atmospheric
CO2 sinks

N.A.C. Johnston a,*, D.R. Blake a, F.S. Rowland a, S. Elliott b, K.S. Lackner b,
H.J. Ziock b, M.K. Dubey b, H.P. Hanson b, S. Barr b

a Department of Chemistry, University of California, Irvine, CA, USA
b Los Alamos National Laboratory, Los Alamos, NM, USA

Received 29 October 2001; accepted 20 March 2002

Abstract

The potential for carbon dioxide (CO2) sequestration via engineered chemical sinks is investigated using a

three dimensional chemical transport model (CTM). Meteorological and chemical constraints for flat or

vertical systems that would absorb CO2 from the atmosphere, as well as an example chemical system of

calcium hydroxide (Ca(OH)2) proposed by Elliott et al. [Compensation of atmospheric CO2 buildup through

engineered chemical sinkage, Geophys. Res. Lett. 28 (2001) 1235] are reviewed. The CTM examines land

based deposition sinks, with 4�� 5� latitude/longitude resolution at various locations, and deposition ve-
locities (v). A maximum uptake of �20 Gton (1015 g) C yr�1 is attainable with v > 5 cm s�1 at a mid-latitude
site. The atmospheric increase of CO2 (3 Gton yr

�1) can be balanced by an engineered sink with an area of

no more than 75,000 km2 at v of 1 cm s�1. By building the sink upwards or splitting this area into narrow
elements can reduce the active area by more than an order of magnitude as discussed in Dubey et al. [31].

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is likely that the observed global warming over the past 50 years is the result of the increase of
greenhouse gas concentrations [2]. Carbon dioxide (CO2) is an efficient greenhouse gas with a
positive radiative absorption of about 1.5 Wm�2 [2]. Its atmospheric concentration has increased
by 0.4% (1.5 ppmv) annually during the past two decades and by 31% since 1750 [2]. Most of this
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increase is anthropogenic, from the burning of fossil fuels (6 Gton yr�1). The ocean and land
absorb about half of these emissions, while the other half corresponds to the atmospheric increase
(3 Gton yr�1). Carbon cycle models project that CO2 will increase from its present concentration
of 360 ppmv to over 500 ppmv by the year 2100 [2].
Reduction in anthropogenic CO2 levels may counteract the effects of global warming. The most

obvious route is to reduce the amount of fossil fuel consumption, or using alternate sources of
energy. This is an overwhelming task at the present time. Other options include scrubbing CO2 at
the source, or removal downwind of stationary sources [3,4]. Sequestration of CO2 has been
proposed in such reservoirs as the deep sea [5–9], aquifers, sediments [10,11] and soils [12]. Here,
the reaction of carbonic acid via engineered chemical sinks, as proposed by Elliott et al. [1], is
further explored. Using a chemical transport model (CTM), the sequestration potential of the
proposed removal process is simulated. The thermodynamics and kinetics of an example chemical
system are also reviewed.

2. Background

How adequately can perfect, flat absorbers extract CO2 from the atmosphere? Meteorological
transport and absorption rates must be considered to determine the size limits of the sink. First,
imagine a strip of perfect absorber 100 km wide running north/south from pole to pole. A few
generalizations can be made to facilitate the following calculations. The dominant global winds
are geostrophic (above 1 km and not affected by shear stresses) and westerly (from west to east).
Horizontal velocities are (on average) about 1, 10 and 30 m s�1, for the surface, planetary
boundary layer (up to 1 km) and free troposphere, respectively. Other transport characteristics are
listed in Table 1. A parcel of air passing over the sink would lose CO2 from the bottom up, and
removal can be viewed as analogous to a serial resistance process. Steady state is achieved within
local vertical mixing times. The residence time of the air above the sink would be 104 s in the lower
atmosphere. The slow transfer step is transport through the laminar layer above the sink. Re-
garding the free troposphere as isolated, the sink can remove 10% of the CO2 from the boundary
layer during a single transit at a 1 cm s�1 transfer velocity. Backfilling from the free troposphere
occurs within hours. When other factors, such as decreased turbulence at night, are included, the
average removal may be 5% of the CO2.
The boundary layer contains about one tenth of the total atmospheric mass of CO2. One

complete pass over the sink will absorb four out of the 750 GtonC [13] in the atmosphere. In one
year, an air parcel at mid-latitudes will circulate 25 times around the globe [14]. The total loss of

Table 1

Vertical transport characteristics near the earth�s surface [1]

Laminar layer Boundary layer Free troposphere

Thickness (cm) 0.01–0.1 105 106

Diffusivity (cm2 s�1) 0.1 (molecular) 106 in daytime 105

Transfer (cm s�1) 1–10 10 in daytime 0.1

slow at night

Internal mixing (s) 0.001–0.1 104 107
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CO2 is almost 100 GtonCyr
�1, more than ten times greater than the anthropogenic, fossil fuel

combustion input. Therefore, the sink can be reduced considerably in size. Ten percent of the pole
to pole distance (�20,000 km) should be adequate. Now, imagine two rectangular sinks, 100 km
wide, running 1000 km along a meridian, one in each hemisphere. The sinks remove CO2 from the
lowest kilometer as westerlies move across. Horizontal diffusivities are small (104 m2 s�1) at the
surface [15], but air is replaced vertically, and latitudinal mixing takes two to three months.
Alternatively, a square area of 300� 300 km2 would suffice. In either case, the hundred

thousand square kilometer value is an upper limit. If the sinks were not flat, but built upward, as
fences or towers, this would further counteract laminarity restrictions. Roughness elements in the
absorber would reduce the thickness of the molecular diffusion layer. A transfer velocity of 10
cm s�1 could possibly be approached. Structures as tall as 10 m and maintained over long hori-
zontal distances are conceivable. The structure height is about 1% of the boundary layer height,
and ten units would remove as much CO2 as 100 km of flat material. However, these options may
alter the momentum budget of the lower atmosphere. An alternative approach which greatly
reduces the active area required by collection units is to split a large single unit into a large
number of parallel units separated by substantial gaps in the prevailing direction of the wind [31].
The limitation of a single large unit is the mixing time of the atmosphere in the vertical direction.
This creates a CO2 depleted shadow downwind of the leading edge of the collection unit. The
result is a significant reduction in the collection magnitude of the sink a short distance beyond its
leading edge which limits the usefulness of most of the downwind part of the large single unit. By
creating gaps between narrow units, nearly the same amount of CO2 can be extracted over the
same total surface area, but now the gaps are no longer covered by active absorption units. In-
stead the gaps simply provide a distance over which the air is vertically mixed thereby significantly
replenishing the CO2 in the near ground layer before it encounters the next active absorption unit.
Micrometeorological modeling is being used to investigate these possibilities in detail [31]. Mi-
crometeorological modeling would be necessary to investigate these possibilities.

3. Chemistry

A chemical system for CO2 sequestration is shown in Table 2. It involves the aqueous reaction
of CO2 with Ca(OH)2, a common basic substance. In this case, CO2 acts like a weak acid and
forms calcium carbonate (CaCO3). Reaction 1 is spontaneous under ambient conditions. The CO2

released in Reaction 2 must be captured, and the calcium must be recycled effectively. Reaction 2,
however, becomes spontaneous only above �1000 K. With proper insulation and heat ex-
change systems, the energy required may approach the endothermicity of Reaction 2. The overall

Table 2

Chemistry and selected thermodynamic properties (in kcalmol�1) of a proposed chemically engineered CO2 sink [1]

Reaction DH�r� n DG�r� n
(1) CO2ðgÞ þ Ca2þðaqÞ þ 2OH�ðaqÞ ! CaCO3ðsÞ þH2OðlÞ �22.9 �24.8
(2) CaCO3ðsÞ ! CaOðsÞ þ CO2ðgÞ 42.7 31.2

(3) CaOðsÞ þH2OðlÞ ! Ca2þðaqÞ þ 2OH�ðaqÞ �19.8 �6.4

Net null 0 0
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objective is to concentrate atmospheric CO2 (�360 ppmv) to one atmosphere of pressure. This
reverse mixing process can be described as a free energy change and amounts to 5 kcalmol�1 over
the costs of Table 2.
Gas to liquid diffusion must be considered also in this system. Rate constants for diffusion

controlled bimolecular aqueous reactions are on the order of 1010 M�1 s�1, and aqueous molecular
diffusion coefficients are about 10�5 cm2 s�1. In a one dimensional diffusion model of the sink
column, scale depths of a tenth of 1 lm (10�5 cm) and a piston velocity of several hundred
centimetre per second are achievable for vertical transfer. In a basic solution, the reaction with
OH� is favored, and CO2�

3 is the most stable carbon species. Carbonate formation results when
Ca2þ is the conjugate cation, with a solubility product of 10�8. For the hydration (CO2 + OH), the
rate constant (k) is 104 M�1 s�1 and a scale depth of 1 lm is derived. The Henry�s Law constant for
CO2 is close to unity in an alkaline solution. For a saturated reagent, piston velocities drop to the
order of 0.1 cm s�1.
Gas and liquid phase restrictions can be reduced by subjecting the air above the sink area to an

aerosol spray of Ca(OH)2. Using cloud properties [15] as a reference, if Ca(OH)2 is present at 10
�2

M (versus 10�5 M CO2 in air), in 10
�6 of the volume of an air parcel, Reaction 1 is reagent limited.

If the particle size is designed to be 100 lm, in 1 l (1000 cm�3), the volume ratio to the gas phase is
>10�3, and Ca2þ is available in excess. The particle surface area is 10�3 cm2, and the total interface
is 1 cm2 cm�3. The diffusion/reaction velocity is 0.1 cm s�1, and the lifetime of CO2(g) is 10 s. The
particles settle at 100 cm s�1. At a height of 10 m, the Ca(OH)2 droplets absorb CO2 and sediment
in less than a minute. Laboratory uptake experiments of ambient air bubbled through saturated
calcium hydroxide solutions in an impinger indicate that CO2 collection efficiencies of order 50%
can easily be obtained [31] for sustained periods of time, offering promise for this extraction
scheme.

4. Model description and simulations

Chemical transport modeling of a perfect, flat CO2 sink reinforces the crude analysis described
above by using realistic time space varying winds and numerical integration of chemical loss. The
University of California (UCI) CTM, adapted from Prather et al. [16], is used to solve the con-
tinuity equations for chemical species over a global three dimensional grid. A split operator
method calculates the separate effects of dry and wet convection (heat transport), advection
(horizontal convective transport), large scale diffusion, sources and chemistry. The grid resolution
is 4� in latitude and 5� in longitude. The CTM contains nine vertical layers centered at pressure
levels of 975, 909, 800, 645, 478, 328, 206, 112 and 40 mbar, with the upper two being strato-
spheric layers. The top layer serves as a rigid lid.
The Goddard Institute for Space Studies general circulation model II generates a globally self-

consistent set of daily wind fields, convergences, convective fluxes, temperatures, humidities and
cloud cover [17]. These data include 8 h averages of mass flux, pressure fields, convection fre-
quencies and 5 day averages of temperature. The meteorological fields are recycled annually in the
CTM, and therefore, interannual variation cannot be taken into account. The CTM is extensively
documented for many tropospheric applications: CFCs [16], 85Kr [18], CO2 [19],

222Rn [20,21],
CH3CCl3 [22], CH4 [23],

210Pb [24] and continental O3 [25,26].
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The entire atmosphere is initialized with a mixing ratio of 360 ppmv CO2, and one or more
surface grid cells are selected for location of the artificial sink. The CO2 sink is simulated as a
deposition velocity loss process in the lowest (surface) layer of the CTM. The amount of CO2

uptake depends on the amount of CO2 in the bottom layer and the deposition velocity (v). Five
different values of v are tested at one location (Nevada––118�W, 38�N): 0.1, 0.5, 1.0, 5.0 and 10.0
cm s�1. The �optimal� v is then used at three other surface locations: Gobi Desert (108�E, 50�N),
Equatorial Pacific Ocean (178�W, 2�S) and the Antarctic (3�E, 82�S). Additionally, a two box sink
with northern and southern hemisphere Pacific Ocean locations is used (178�W, 46�N and 46�S).
These are plausible locations for an engineered sink based on sparse population and available
space.

5. Results

The total amount of carbon captured over one year (GtonCyr �1) in the CTM is calculated for
six different v (Table 3). The maximum amount of carbon that can be absorbed is 19 GtonCyr�1.
This upper limit is achieved with v > 5 cm s�1. At higher v, the loss becomes limited by the amount
of CO2 in the lowest grid box. At v ¼ 1 cm s�1, 7 GtonCyr�1 are absorbed, an amount about
equal to the anthropogenic input. Thus, 1 cm s�1 is used for v in the simulations with different sink
locations. This is a typical value for a reactive gas [15]. The dependence of the carbon burden on v
of the sink is also shown in Fig. 1. Here, the loss of carbon is shown to be linear, as is expected
by the nature of the deposition velocity driven sink.
The net loss ranges from 1 to 10 GtonCyr�1 for the single box locations and is 17 GtonCyr�1

for the two boxes in the Pacific (Table 4). The negative carbon flux is about 40 ktonCkm�2 yr�1 at
all single locations (ranging from 37 to 42 ktonCkm�2 yr�1) and 50 ktonCkm�2 yr�1 for the
combined Pacific locations. On a per area basis, all the single locations are about the same in CO2

absorption efficiency. Although the sink area is increased by 40% from the equatorial Pacific sink
to the mid-latitude Pacific sinks, the net carbon loss increases by 70%. This may be due to low
winds at the equator. The overall loss of CO2 depends on v and the amount of CO2 in the grid
box, which, in turn, is controlled by the meteorology and losses. No sources are investigated here,
but the location of sources and other sinks would also change the global mixing ratio distribution.
The surface mixing ratio (ppmv) of CO2 is shown for the entire globe for each sink location

after one year of loss (Fig. 2). These snapshots illustrate the CO2 shadow that results from the
sink. The deepest shadow is produced for the Gobi Desert sink. This may be due to high pressure
or other meteorological events that would allow the air to become stagnant over the sink. To

Table 3

CO2 uptake efficiency for various deposition velocities at the Nevada location

Deposition velocity (cm s�1) Net loss (GtonCyr�1)

0.1 0.9

0.4 3.2

0.5 4.0

1.0 7.2

5.0 18.9

10.0 18.9
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further investigate this, the time series mixing ratio of CO2 is monitored over one year (Fig. 3).
The CO2 mixing ratio in the Gobi Desert box fluctuates predominately between 250 and 350
ppmv, and spikes downward to 150 ppmv twice during the winter months of December and
January. During the rest of the year, there appears to be a bimonthly drop in mixing ratio, but the
average is 300 ppmv.

6. Discussion

The CTM results indicate that using a 4�� 5� sized deposition velocity sink with v of 0.5 cm s�1

or higher sequesters enough CO2 to counteract the atmospheric increase of 3 GtonCyr
�1. For v of

1 cm s�1, the average uptake at various locations is 40 ktonCkm�2 yr�1. At this rate, a sink area of
about 75,000 km2 is needed to balance the increase. However, by using large numbers of active
small units dispersed so that they don�t see each other�s CO2 shadows, the active source area could
be reduced by several orders of magnitude. The maximum amount of CO2 absorbed above v of 5
cm s�1 is about 20 ktonCyr�1. The location of the sink is important in terms of the global CO2

mixing ratio distribution and the resulting CO2 shadow created. The fluctuation of CO2 may have
large impacts on the biosphere. However, this may compare to natural seasonal and diurnal
fluctuations of CO2. For example, in a forest, CO2 concentrations can fluctuate from 305 ppmv

Table 4

CO2 uptake efficiencies with v ¼ 1 cm s�1 at five locations

Location of sink Longitude, latitude

(mid-point)

Loss CO2

(ktonCkm�2 yr�1)

Loss CO2

(GtonCyr�1)

Antarctica 3�E, 82�S, 41.2 1.4

Gobi Desert 108�E, 50�N, 42.3 6.7

Nevada 118�W, 38�N 37.1 7.2

Equatorial Pacific Ocean 178�W, 2�S 40.8 10.1

NHþ SH Pacific Ocean

(two box)

178�W, 46�Nþ 46�S 49.9 17.2

Fig. 1. The effect of deposition velocity on CO2 burden (GtonC) for the Nevada box sink location.
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during peak photosynthetic activity (around noon) to 400 ppmv at night [27]. Also, CO2 can vary
seasonally up to 6 ppmv in certain locations, as evidenced from data in Mauna Loa, Hawaii [28].
High levels of CO2 are observed in winter and spring, corresponding to low photosynthetic

Fig. 2. CO2 mixing ratio (ppmv) after one year of 1 cm s
�1 deposition velocity sink in the following locations: (a)

Nevada, (b) Gobi Desert, (c) Equatorial Pacific Ocean, (d) Antarctica, (e) Northern and Southern Pacific Ocean.

Fig. 3. Time series mixing ratio of CO2 for one year at Gobi Desert location.
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activity. In addition, there is a gradient of CO2 (4 ppmv) from the northern to the southern
hemisphere, due mostly to the dominant use of fossil fuels in the northern hemisphere [29].
Photosynthesis is, thus, a comparable natural system to the engineered sink. The global net

primary productivity (NPP) is 60� 10 GtonCyr�1 [29]. The most efficient types of ecosystems in
terms of mean NPP per area are wetlands (1.3 kgCm�2 yr�1), forests (0.4–0.8 kgCm�2 yr �1),
cultivated land (0.8 kgCm�2 yr�1) and tropical woodland and savanna (0.45 kgCm�2 yr�1). One
of the most efficient photosynthetic CO2 absorbers is corn. At high illuminance and 300 ppmv
ambient CO2, the net photosynthetic capacity of single leaves is 40–55 kg CO2 m

�2 leaf yr�1 [30].
Using the relationship between v and CO2 uptake at the Nevada location, v is estimated to be
about 0.39 cm s�1, resulting from the corn photosynthetic uptake above. If the Nevada location
were covered with cornfields instead of a 1 cm s�1 perfect absorber, the photosynthetic uptake of
CO2 would be 60 kgCm

�2 yr�1, less than half the engineered sink uptake at 1 cm s�1. This is
probably an extremely high estimate, since laboratory studies tend to use optimal plant selections
and environmental conditions. Also, this assumes 100% leaf cover and continuous lighting. A
more practical estimate would be 5% or less (3 kgCm�2 yr�1), which is still higher than wetlands
and forests on a per area basis.

7. Conclusions

CTM calculations confirm earlier estimations [1] that a chemical sink, engineered correctly (v >
0:5 cm s�1), and placed in a large, remote geographical area such as Nevada or the Gobi Desert,
could remove enough CO2 annually to compensate for the atmospheric increase. A model chemical
system of Ca(OH)2 has promising thermodynamics for chemical sinkage, but the kinetics should be
further investigated in the laboratory, as well as other scrubbers. The chemical sink was compared
to photosynthetic sinks and could surpass their carbon uptake, given v > 1 cm s�1. Building the
engineered sink upward would facilitate mixing and increase the effectiveness of CO2 uptake. Other
factors must be considered, such as economics and limiting resources, that could restrain such
creation of a chemically engineered CO2 sink. Risk assessment must also be considered regarding
the CO2 shadow created. However, given ideal thermodynamics and kinetics, the meteorology is
sufficient to reduce the amount of atmospheric CO2, or at least keep it from increasing.
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